首页> 外文期刊>Planetary and space science >Kinetic simulations of finite gyroradius effects in the lunar plasma environment on global, meso, and microscales
【24h】

Kinetic simulations of finite gyroradius effects in the lunar plasma environment on global, meso, and microscales

机译:在月球等离子环境中全局,中观和微观尺度上有限陀螺半径效应的动力学模拟

获取原文
获取原文并翻译 | 示例
           

摘要

The recent in situ particle measurements near the Moon by Chandrayaan-1 and Kaguya missions as well as the earlier observation by the Lunar Prospector have shown that the Moon-solar wind interaction is more complicated than believed earlier. The new observations have arisen the need for a detailed modelling of the near surface plasma-surface processes and regions near the lunar magnetic anomalies. Especially, interpretation of ion, electron, and energetic neutral atoms (ENA) observations have shown that the plasma cannot be treated as a single fluid but that kinetic effects have to be taken into account. We have studied the kinetic effects and, especially, the role of finite gyro-radius effects at the Moon by kinetic plasma simulations at three different length-scales which exist in the Moon-solar wind interaction. The solar wind interaction with a magnetic dipole, which mimics the lunar magnetic anomalies in this study, is investigated by a 3D self-consistent hybrid model (HYB-Moon) where protons are particles and electrons form a charge neutralizing mass less fluid. This study shows that the particle flux and density and the bulk velocity of the solar wind protons that hit the lunar surface just above the dipole are decreased compared to their undisturbed values. In addition, a particle "halo" region was identified in the simulation, a region around the dipole where the proton density and the particle flux are higher than in the solar wind, qualitatively in agreement with energetic hydrogen atom observations made by the Chandrayaan-1 mission. The near surface plasma within the magnetic anomaly within a Debye sheath is studied by an electromagnetic Particle-in-Cell, PIC, simulation (HYB-es). In the PIC simulation both ions and electrons are treated as particles. Further, we assume in the PIC simulation that the magnetic anomaly blocks away all solar wind particles and the simulation contains only photo-electrons. The analysis shows that the increased magnetic field decreases the strength of the electric potential and results in a thinner potential sheath than without the magnetic field. Overall, the simulations give support for the suggestions that kinetic effects play an important role on the properties of the lunar plasma environment.
机译:Chandrayaan-1号和Kaguya号任务在月球附近进行的近地原地粒子测量以及月球勘探者的较早观测表明,月球-太阳风相互作用比以前认为的要复杂。新的观测结果提出了对近地表等离子体表面过程和月球磁异常附近区域进行详细建模的需求。特别是,对离子,电子和高能中性原子(ENA)的观察结果的解释表明,等离子体不能被视为单一的流体,而必须考虑动力学效应。我们通过月球-太阳风相互作用中存在的三种不同长度尺度上的动力学等离子体模拟研究了月球的动力学效应,尤其是有限陀螺半径效应的作用。通过3D自洽混合模型(HYB-Moon)研究了质子为粒子,电子形成电荷中和质量较少的流体的3D自洽混合模型,研究了太阳风与磁偶极子的相互作用,该偶极子模拟了月球的磁异常。这项研究表明,撞击到偶极子正上方的月球表面的太阳风质子的粒子通量,密度和体积速度均比其未扰动值降低。此外,在模拟中确定了一个粒子“晕”区域,该区域是偶极子周围的一个区域,在该区域中质子密度和粒子通量高于太阳风,这与Chandrayaan-1的高能氢原子观测定性一致任务。通过电磁粒子模拟(HYB-es)研究了德拜鞘内磁异常内的近表面等离子体。在PIC模拟中,离子和电子都被视为粒子。此外,我们在PIC仿真中假设磁异常阻止了所有太阳风粒子,并且该仿真仅包含光电子。分析表明,增加的磁场会降低电势强度,并导致比没有磁场的情况更薄的电势鞘。总体而言,模拟为动力学效应对月球血浆环境的性质起重要作用的建议提供了支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号