首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >INVESTIGATING THE PRECIPITATION KINETICS AND HARDENING EFFECTS OF γ' IN INCONEL 625 USING A COMBINATION OF MESO-SCALE PHASE-FIELD SIMULATIONS AND MACRO-SCALE PRECIPITATE STRENGTHENING CALCULATIONS
【24h】

INVESTIGATING THE PRECIPITATION KINETICS AND HARDENING EFFECTS OF γ' IN INCONEL 625 USING A COMBINATION OF MESO-SCALE PHASE-FIELD SIMULATIONS AND MACRO-SCALE PRECIPITATE STRENGTHENING CALCULATIONS

机译:使用中间级相场模拟和宏观沉淀强化计算,研究Inconel 625中γ“γ”的沉淀动力学和硬化效应

获取原文

摘要

Precipitation strengthening of alloys by the formation of secondary particles (precipitates) in the matrix is one of the techniques used for increasing the mechanical strength of metals. Understanding the precipitation kinetics such as nucleation, growth, and coarsening of these precipitates is critical for evaluating their hardening effects and improving the yield strength of the alloy during heat treatment. To optimize the heat treatment strategy and accelerate alloy design, predicting precipitate hardening effects via numerical methods is a promising complement to trial-and-error-based experiments and the physics-based phase-field method stands out with the significant potential to accurately predict the precipitate morphology and kinetics. In this study, we present a phase-field model that captures the nucleation, growth, and coarsening kinetics of precipitates during isothermal heat treatment conditions. Thermodynamic data, diffusion coefficients, and misfit strain data from experimental or lower length-scale calculations are used as input parameters for the phase-field model. Classical nucleation theory is implemented to capture the nucleation kinetics. As a case study, we apply the model to investigate y" precipitation kinetics in Inconel 625. The simulated mean particle length, aspect ratio, and volume fraction evolution are in agreement with experimental data for simulations at 600 °C and 650 °C during isothermal heat treatment. Utilizing the meso-scale results from the phase-field simulations as input parameters to a macro-scale coherency strengthening model, the evolution of the yield strength during heat treatment was predicted. In a broader context, we believe the current study can provide practical guidance for applying the phase-field approach as a link in the multiscale modeling of material properties.
机译:通过在基质中形成二次颗粒(沉淀物)来加强合金的沉淀是用于增加金属机械强度的技术之一。理解这些沉淀物的成核,生长和粗化等沉淀动力学对于评估其在热处理期间评估其硬化效果并提高合金的屈服强度至关重要。为了优化热处理策略和加速合金设计,通过数值方法预测沉淀效果是对试误的实验的有希望的补充,并且基于物理的相现场方法脱颖而出,具有准确预测的显着潜力沉淀形态和动力学。在这项研究中,我们提出了一种相场模型,其在等温热处理条件下捕获沉淀物的成核,生长和粗化动力学。来自实验或更低长度计算的热力学数据,扩散系数和错入应变数据用作相场模型的输入参数。实施古典成核理论以捕获成核动力学。作为一个案例研究,我们将模型应用于调查y“沉淀动力学在625中。模拟平均颗粒长度,纵横比和体积分数演化与在等温期间600°C和650℃的模拟的实验数据一致热处理。利用相位尺度的结果,从基相模拟作为宏观相干强化模型的输入参数,预测了热处理期间屈服强度的演变。在更广泛的背景下,我们相信目前的研究可以提供应用阶段现场方法作为材料特性的多尺度建模中的链接的实用指导。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号