...
首页> 外文期刊>Planetary and space science >Dust environment of an airless object: A phase space study with kinetic models
【24h】

Dust environment of an airless object: A phase space study with kinetic models

机译:无气物体的粉尘环境:动力学模型的相空间研究

获取原文
获取原文并翻译 | 示例
           

摘要

The study of dust above the lunar surface is important for both science and technology. Dust particles are electrically charged due to impact of the solar radiation and the solar wind plasma and, therefore, they affect the plasma above the lunar surface. Dust is also a health hazard for crewed missions because micron and sub-micron sized dust particles can be toxic and harmful to the human body. Dust also causes malfunctions in mechanical devices and is therefore a risk for spacecraft and instruments on the lunar surface. Properties of dust particles above the lunar surface are not fully known. However, it can be stated that their large surface area to volume ratio due to their irregular shape, broken chemical bonds on the surface of each dust particle, together with the reduced lunar environment cause the dust particles to be chemically very reactive. One critical unknown factor is the electric field and the electric potential near the lunar surface. We have developed a modelling suite, Dusty Plasma Environments: near-surface characterisation and Modelling (DPEM), to study globally and locally dust environments of the Moon and other airless bodies. The DPEM model combines three independent kinetic models: (1) a 3D hybrid model, where ions are modelled as particles and electrons are modelled as a charged neutralising fluid, (2) a 2D electrostatic Particle-in-Cell (PIC) model where both ions and electrons are treated as particles, and (3) a 3D Monte Carlo (MC) model where dust particles are modelled as test particles. The three models are linked to each other unidirectionally; the hybrid model provides upstream plasma parameters to be used as boundary conditions for the PIC model which generates the surface potential for the MC model. We have used the DPEM model to study properties of dust particles injected from the surface of airless objects such as the Moon, the Martian moon Phobos and the asteroid RQ36. We have performed a (v(0), m/q)-phase space study where the property of dust particles at different initial velocity (v(0)) and initial mass per charge (mlq) ratio were analysed. The study especially identifies regions in the phase space where the electric field within a non-quasineutral plasma region above the surface of the object, the Debye layer, becomes important compared with the gravitational force. Properties of the dust particles in the phase space region where the electric field plays an important role are studied by a 3D Monte Carlo model. The current DPEM modelling suite does not include models of how dust particles are initially injected from the surface. Therefore, the presented phase space study cannot give absolute 3D dust density distributions around the analysed airless objects. For that, an additional emission model is necessary, which determines how many dust particles are emitted at various places on the analysed (v(0), m/q)-phase space. However, this study identifies phase space regions where the electric field within the Debye layer plays an important role for dust particles. Overall, the initial results indicate that when a realistic dust emission model is available, the unified lunar based DPEM modelling suite is a powerful tool to study globally and locally the dust environments of airless bodies such as planetary moons, Mercury, asteroids and non-active comets far from the Sun. (C) 2015 Elsevier Ltd. All rights reserved.
机译:对月球表面上方的尘土的研究对科学和技术都至关重要。由于太阳辐射和太阳风等离子体的影响,粉尘颗粒带电,因此,它们会影响月球表面上方的等离子体。灰尘对乘员飞行任务也有健康危害,因为微米级和亚微米级的灰尘颗粒可能对人体有毒且有害。灰尘还会导致机械设备发生故障,因此有航天器和仪器在月球表面上的危险。月球表面上方尘埃颗粒的性质尚不完全清楚。然而,可以说,由于它们不规则的形状,它们的大的表面积与体积之比,每个尘埃颗粒表面上的化学键断裂,以及减少的月球环境,使得尘埃颗粒在化学上具有很高的反应性。一个重要的未知因素是月球表面附近的电场和电势。我们开发了一个建模套件“尘埃等离子体环境:近地表特征和建模(DPEM)”,以研究月球和其他无空气物体的全球和局部尘埃环境。 DPEM模型结合了三个独立的动力学模型:(1)3D混合模型,其中离子被建模为粒子,而电子被模型化为带电的中和液;(2)2D静电单元内粒子(PIC)模型,其中两个离子和电子被视为粒子,以及(3)3D蒙特卡罗(MC)模型,其中尘埃粒子被建模为测试粒子。这三个模型是单向链接的。混合模型提供上游等离子体参数,以用作PIC模型的边界条件,从而为MC模型生成表面电势。我们已经使用DPEM模型研究了从诸如月球,火星火卫一火卫一和小行星RQ36等无空气物体的表面喷射的尘埃粒子的特性。我们进行了(v(0),m / q)相空间研究,分析了不同初始速度(v(0))和初始每电荷质量(mlq)比率下的尘埃颗粒特性。这项研究特别确定了相空间中的区域,在该区域中,物体表面(德拜层)上方的非准中性等离子体区域中的电场与重力相比变得很重要。通过3D蒙特卡洛模型研究了电场在其中起重要作用的相空间区域中尘埃粒子的特性。当前的DPEM建模套件不包括最初如何从表面注入灰尘颗粒的模型。因此,提出的相空间研究无法给出分析的无气物体周围的绝对3D尘埃密度分布。为此,需要一个附加的发射模型,该模型确定在分析的(v(0),m / q)相空间上的各个位置发射了多少灰尘颗粒。但是,这项研究确定了相空间区域,其中德拜层内的电场对粉尘颗粒起着重要作用。总体而言,初步结果表明,当可以使用逼真的尘埃排放模型时,基于月球的统一DPEM建模套件是一种功能强大的工具,可以在全球和本地范围内研究无空气物体(如行星月亮,水星,小行星和非活动物体)的尘埃环境。远离太阳的彗星。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号