首页> 外文期刊>Physical review.B.Condensed matter and materials physics >Machine learning force fields based on local parametrization of dispersion interactions: Application to the phase diagram of C_60
【24h】

Machine learning force fields based on local parametrization of dispersion interactions: Application to the phase diagram of C_60

机译:基于分散交互局部参数化的机器学习力场:应用于C_60的相图

获取原文
获取原文并翻译 | 示例
       

摘要

We present a comprehensive methodology to enable the addition of van der Waals (vdW) corrections to machine learning (ML) atomistic force fields. Using a Gaussian approximation potential (GAP) [Bartok et ai, Phys. Rev. Lett. 104, 136403 (2010)] as a baseline, we accurately machine learn a local model of atomic polariz-abilities based on Hirshfeld volume partitioning of the charge density [Tkatchenko and Scheffier, Phys. Rev. Lett. 102, 073005 (2009)]. These environment-dependent polarizabililies are then used to parametrize a screened London-dispersion approximation to the vdW interactions. Our ML vdW model only needs to learn the charge density partitioning implicitly by learning the reference Hirshfeld volumes from density functional theory (DFT). In practice, we can predict accurate Hirshfeld volumes from the knowledge of the local atomic environment (atomic positions) alone, making the model highly computationally efficient. For additional efficiency, our ML model of atomic polarizabilities reuses the same many-body atomic descriptors used for the underlying GAP learning of bonded interatomic interactions. We also show how the method enables straightforward computation of gradients of the observables, even when these remain challenging for the reference method (e.g., calculating gradients of the Hirshfeld volumes in DFT). Finally, we demonstrate the approach by studying the phase diagram of C_(60), where vdW effects are important. The need for a highly accurate vdW-inclusive reactive force field is highlighted by modeling the decomposition of the C_(60) molecules taking place at high pressures and temperatures.
机译:我们提出了一种全面的方法,可以向机器学习(ML)原子强制领域添加van der Waals(VDW)校正。使用高斯近似电位(间隙)[Bartok等,Phy。 rev. lett。 104,136403(2010)]作为基准,我们准确地了解了基于赫什菲尔德的电荷密度的血频释放能力的本地原子偏振能力模型[Tkatchenko和Scheffier,phy。 rev. lett。 102,073005(2009)]。然后,这些环境依赖性偏振珠铁将参加VDW交互参加筛选的伦敦色散近似。我们的ML VDW模型只需通过学习来自密度泛函理论(DFT)的参考HIRSHFELD体积来学习充电密度分区。在实践中,我们可以通过单独的局部原子环境(原子位置)的知识预测精确的HIRSHFELD卷,使模型高度计算效率。为了额外效率,我们的ML模型的原子偏振态可重用相同的许多身体原子描述符,用于粘合的外部互动的底层差距学习。我们还展示了该方法如何实现可观察到的梯度的直接计算,即使这些对参考方法仍然具有挑战性(例如,计算DFT中的HIRSHFELD卷的梯度)。最后,我们通过研究C_(60)的相图来展示方法,其中VDW效应很重要。通过在高压和温度下进行的C_(60)分子的分解来突出显示对高精度VDW-包容性反应力场的需求。

著录项

  • 来源
    《Physical review.B.Condensed matter and materials physics》 |2021年第5期|054106.1-054106.16|共16页
  • 作者单位

    Department of Applied Physics Aalto University 02150 Espoo Finland;

    Department of Applied Physics Aalto University 02150 Espoo Finland;

    Department of Physics and Warwick Centre for Predictive Modelling School of Engineering University of Warwick Coventry CV4 7AL United Kingdom;

    Department of Electrical Engineering and Automation Aalto University 02150 Espoo Finland;

    Engineering Laboratory University of Cambridge Cambridge CB2 1PZ United Kingdom;

    Department of Applied Physics QTF Center of Excellence Aalto University 02150 Espoo Finland Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences Loughborough University Loughborough Leicestershire LE11 3TU United Kingdom;

    Department of Electrical Engineering and Automation Aalto University 02150 Espoo Finland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号