...
首页> 外文期刊>Physical review.B.Condensed matter and materials physics >Band structure engineering of van der Waals heterostructures using ferroelectric clamped sandwich structures
【24h】

Band structure engineering of van der Waals heterostructures using ferroelectric clamped sandwich structures

机译:使用铁电夹紧夹层结构的van der Waals异质结构的带结构工程

获取原文
获取原文并翻译 | 示例

摘要

A novel strategy of band structure engineering of van der Waals heterostructure is proposed using a ferroelectric (FE) clamped sandwich structure from first principles. The validity of the strategy is demonstrated in the sandwich structure of In_2Se_3/bilayer-CrI_3/In_2Se_3 (In_2Se_3/bi-CrI_3/In_2Se_3) made by ferroelectric In-2Se_3 layers and semiconducting bilayer (SB) CrI_3. Four states with different band structures in the FE/SB/FE sandwich structure are obtained by switching the FE polarization in the top and bottom In_2Se_3 layers. Two of the states possess spin-splitting semiconducting band structures with opposite spin channel in conduction bands which are generated from a spin-degenerated band structure of the CrI_3 bilayer, resulting in an electric field controllable and nonvolatile four states spin-field effect transistor. The strategy of using FE layers to engineer band structures and generate spin-splitting semiconducting band structure in van der Waals heterostructure opens a new route in two-dimensional electronics and spintronics.
机译:范德华异质结带结构工程的新策略是使用从第一原理的铁电(FE)夹持夹层结构提出。该策略的有效性证明In_2Se_3的夹层结构/双层CrI_3 / In_2Se_3(In_2Se_3 /双CrI_3 / In_2Se_3)由铁电体在-2Se_3层和半导电双层(SB)CrI_3制成。与在FE / SB / FE夹层结构不同的能带结构四种状态是通过在顶部和底部层In_2Se_3切换FE极化获得。状态的两个具有自旋分裂半导体的能带结构与从CrI_3双层的自旋简并带结构产生的,从而导致的电场控制的和非易失性的四种状态自旋场效应晶体管在导带相反的自旋信道。使用FE层来设计的能带结构,并产生自旋分裂半导体能带结构的范德华异质打开二维电子自旋电子学和新路线的战略。

著录项

  • 来源
    《Physical review.B.Condensed matter and materials physics》 |2021年第12期|125426.1-125426.5|共5页
  • 作者单位

    National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures Department of Materials Science and Engineering Nanjing University Nanjing 210093 China School of Physics and Electronic Engineering Zhengzhou Normal University Zhengzhou 450044 China Jiangsu Key Laboratory of Artificial Functional Materials Nanjing University Nanjing 210093 China;

    Physics Department and Institute for Nanoscience and Engineering University of Arkansas Fayetteville Arkansas 72701 USA;

    National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures Department of Materials Science and Engineering Nanjing University Nanjing 210093 China Jiangsu Key Laboratory of Artificial Functional Materials Nanjing University Nanjing 210093 China;

    National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures Department of Materials Science and Engineering Nanjing University Nanjing 210093 China Jiangsu Key Laboratory of Artificial Functional Materials Nanjing University Nanjing 210093 China;

    Physics Department and Institute for Nanoscience and Engineering University of Arkansas Fayetteville Arkansas 72701 USA;

    National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures Department of Materials Science and Engineering Nanjing University Nanjing 210093 China Jiangsu Key Laboratory of Artificial Functional Materials Nanjing University Nanjing 210093 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号