...
首页> 外文期刊>Physical review.B.Condensed matter and materials physics >Evolution of Fe 3d impurity band state as the origin of high Curie temperature in the p-type ferromagnetic semiconductor (Ga,Fe)Sb
【24h】

Evolution of Fe 3d impurity band state as the origin of high Curie temperature in the p-type ferromagnetic semiconductor (Ga,Fe)Sb

机译:FE 3D杂质带状态作为P型铁磁半导体(GA,Fe)SB中高居里温度的起源

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

(Ga_(1-x),Fe_x)Sb is one of the promising ferromagnetic semiconductors for spintronic device applications because its Curie temperature (T_C) is above 300 K when the Fe concentration .v is equal to or higher than ~0.20. However, the origin of the high T_C in (Ga,Fe)Sb remains to be elucidated. To address this issue, we use resonant photoemission spectroscopy (RPES) and first-principles calculations to investigate the X dependence of the Fe 3d states in (Ga_(1-x),Fe_x)Sb (x = 0.05, 0.15, and 0.25) thin films. The observed Fe 2p-3d RPES spectra reveal that the Fe-3d impurity band (IB) crossing the Fermi level becomes broader with increasing x, which is qualitatively consistent with the picture of double-exchange interaction. Comparison between the obtained Fe-3d partial density of states and the first-principles calculations suggests that the Fe-3d IB originates from the minority-spin (↓) e states. The results indicate that enhancement of the double-exchange interaction between e_↓ electrons with increasing x is the origin of the high T_C in (Ga,Fe)Sb.
机译:(Ga_(1-x),fe_x)Sb是用于旋转式装置应用的承诺的铁磁半导体之一,因为当Fe浓度等于或高于〜0.20时,其居里温度(t_c)高于300k。然而,高T_C IN(GA,FE)SB的起源仍有待阐明。为了解决这个问题,我们使用谐振光曝光光谱(RPE)和第一原理计算来研究FE 3D状态(GA_(1-x),FE_X)SB(x = 0.05,0.15和0.25)的x依赖性薄膜。观察到的Fe 2P-3D RPES光谱揭示了交叉FERMI水平的FE-3D杂质带(IB)随着X的增加而变宽,其与双交换相互作用的图像定性一致。所获得的FE-3D部分密度与第一原理计算之间的比较表明FE-3D IB源自少数旋转(↓)e状态。结果表明,随着X的增加,E_∞电子之间的双交换相互作用的增强是(GA,FE)SB中的高T_C的起源。

著录项

  • 来源
    《Physical review.B.Condensed matter and materials physics》 |2020年第24期|245203.1-245203.8|共8页
  • 作者单位

    Department of Electrical Engineering and Information Systems The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan;

    The Institute for Solid State Physics The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8581 Japan;

    Department of Electrical Engineering and Information Systems The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan;

    Quantum Materials Science Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son Okinawa 904-0495 Japan;

    Department of Electrical Engineering and Information Systems The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan Institute of Engineering Innovation The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0032 Japan PRESTO Japan Science and Technology Agency 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan;

    Department of Physics Ho Chi Minh City University of Pedagogy 280 Au Duong Vuong Street District 5 Ho Chi Minh City 748242 Vietnam;

    Materials Sciences Research Center Japan Atomic Energy Agency Sayo-gun Hyogo 679-5148 Japan;

    Materials Sciences Research Center Japan Atomic Energy Agency Sayo-gun Hyogo 679-5148 Japan;

    Department of Physics The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan Department of Applied Physics Waseda University Okubo Shinjuku Tokyo 169-8555 Japan;

    Department of Electrical Engineering and Information Systems The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan Center for Spintronics Research Network The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan;

    Department of Electrical Engineering and Information Systems The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan Center for Spintronics Research Network The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号