首页> 外文期刊>Physical Review. B, Condensed Matter >Graphene-supported small transition-metal clusters: A density functional theory investigation within van derWaals corrections
【24h】

Graphene-supported small transition-metal clusters: A density functional theory investigation within van derWaals corrections

机译:石墨烯支撑的小型过渡金属簇:范德尔德修正中的密度泛函理论调查

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Transition-metal nanoparticles adsorbed on graphene are of great interest due to the unique catalytic and magnetic properties resulting from nanoparticles-graphene interactions. Comparison between the physical properties of such systems and those of the same nanoparticles in the gas phase is especially important. Here we report a systematic density functional investigation of the structural, energetic, and magnetic properties of small Ni_n, Pd_n, and Pt_n clusters, comprising from n = 1 to 6 atoms, in the gas phase and adsorbed on a graphene monolayer. Our results show that the Ni adatom binds to the graphene hollow site, with -1.47-meV adsorption energy, while Pd and Pt prefer the bridge sites, with -1.14- and -1.62-meV adsorption energies, respectively. This difference is determined by a competition between quantum and classical forces. Ni_2 and Pt_2 dimers bind perpendicularly on hollow and bridge sites, respectively, while Pd_2 lies parallel to the graphene sheet, with each adatom on a bridge site. For larger TMn (TM = Ni, Pd, Pt; n = 3–6) clusters, either two or three atoms bind to bridge graphene sites. In almost all cases the adsorbed clusters retain their gas-phase structures. The exceptions are Ni_5 and Pt_4, which acquire more compact structures with effective coordination number 12 and 19% larger than in the gas phase, respectively. As the number of atoms grows, the cluster binds more weakly to the graphene, while its binding energy mounts up. Van der Waals corrections to the plain density functional theory (DFT) total energy raise the adsorption energy, but leave the cluster structure unchanged, in the gas phase or upon adsorption. Bader charge analysis shows that adsorption causes minor charge redistribution: the TM atoms bound to C atoms become positively charged, while the remaining metal atoms acquire negative charge. We have derived an approximate analytical expression for the local densities of states for the d orbitals of Ni, Pd, and Pt adatoms, on the basis of an extended Anderson-Newns model. Comparison with the DFT local densities of states for adsorption at hollow sites has identified interference among the wave functions responsible for the binding of distinct d levels to the C atoms. No such interference has become visible for adsorption at bridge sites.
机译:由于纳米颗粒 - 石墨烯相互作用导致的独特的催化和磁性,吸附在石墨烯上的过渡金属纳米颗粒具有很大的兴趣。这种系统的物理性质与气相中的相同纳米颗粒的物理性质之间的比较尤其重要。在这里,我们报告了在气相中的小Ni_N,PD_N和PT_N簇的结构,能量和Pt_n簇的结构,能量和磁性的系统密度泛函调查,并在气相中吸附在石墨烯单层上。我们的结果表明,Ni Adatom与石墨烯空心部位结合,具有-1.47-meV吸附能量,而PD和PT分别优选桥接点,分别具有-1.14-1.62-meV吸附能量。这种差异由量子和古典力之间的竞争决定。 Ni_2和Pt_2二聚体分别垂直于中空和桥接位点,而PD_2平行于石墨烯片,每个Adatom在桥接场地上。对于较大的TMN(TM = Ni,Pd,Pt; n = 3-6)簇,两组或三个原子与桥梁石墨烯位点结合。在几乎所有情况下,吸附的簇都保留了它们的气相结构。例外是NI_5和PT_4,其分别获取更紧凑的结构,其具有比在气相中大的有效配位12和19%的结构。随着原子的数量而来,簇将簇更弱到石墨烯,而其结合能量安装起来。 van der Waals校正普通密度函数理论(DFT)总能量提高吸附能量,但在气相或吸附时使簇结构保持不变。较糟糕的费用分析表明,吸附导致轻微的电荷再分配:与C原子相结合的TM原子变得正电荷,而剩余的金属原子获得负电荷。我们基于延长的Anderson-Newns模型,我们为NI,PD和PT ADATOM的D轨道的局部密度衍生出近似的分析表达。与中空部位在中空部位吸附的状态的DFT局部密度的比较已经鉴定了负责不同D水平与C原子结合的波函数之间的干扰。在桥网站上吸附没有这种干扰是可见的。

著录项

  • 来源
    《Physical Review. B, Condensed Matter》 |2017年第24期|235422.1-235422.11|共11页
  • 作者单位

    Sao Carlos Institute of Physics University of Sao Paulo P.O. Box 369 13560-970 Sao Carlos SP Brazil Amazonas State University Avenida Djalma Batista 3578 Flores 69050-010 Manaus AM Brazil;

    Sao Carlos Institute of Chemistry University of Sao Paulo P.O. Box 780 13560-970 Sao Carlos SP Brazil;

    Sao Carlos Institute of Physics University of Sao Paulo P.O. Box 369 13560-970 Sao Carlos SP Brazil;

    Sao Carlos Institute of Chemistry University of Sao Paulo P.O. Box 780 13560-970 Sao Carlos SP Brazil;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号