...
首页> 外文期刊>Physical Review. B, Condensed Matter >Fermi-surface transformation across the pseudogap critical point of the cuprate superconductor La_(1.6−x)Nd_(0.4)Sr_xCuO_4
【24h】

Fermi-surface transformation across the pseudogap critical point of the cuprate superconductor La_(1.6−x)Nd_(0.4)Sr_xCuO_4

机译:铜型超导体LA_(1.6-X)ND_(0.4)SR_XCUO_4的伪曲面变换

获取原文
获取原文并翻译 | 示例
           

摘要

The electrical resistivity ρ and Hall coefficient RH of the tetragonal single-layer cuprate La_(1.6−x)Nd_(0.4)Sr_xCuO_4 were measured in magnetic fields up to H = 37.5 T, large enough to access the normal state at T → 0, for closely spaced dopings p across the pseudogap critical point at p* = 0.23. Below p*, both coefficients exhibit an upturn at low temperature, which gets more pronounced with decreasing p. Taken together, these upturns show that the normal-state carrier density n at T = 0 drops upon entering the pseudogap phase. Quantitatively, it goes from n = 1 + p at p = 0.24 to n = p at p = 0.20. By contrast, the mobility does not change appreciably, as revealed by the magnetoresistance. Our data are in excellent agreement with recent high-field data on YBa_2Cu_3O_y and La_(2−x)Sr_xCuO_4. The quantitative consistency across three different cuprates shows that a drop in carrier density from 1 + p to p is a universal signature of the pseudogap transition at T = 0.We discuss the implication of these findings for the nature of the pseudogap phase.
机译:在高达H = 37.5t的磁场中测量四边形单层铜铜La_(1.6-x)Nd_(0.4)Sr_xcuo_4的电阻率ρ和霍尔系数Rh,足够大以在T→0处访问正常状态,对于P * = 0.23的PseudoGAP关键点的紧密间隔掺杂P.下面p *,两个系数在低温下表现出高温,这会随着下降的降低而变得更加明显。在一起,这些翻转表明,在进入PseudoGAP阶段时,正常状态载波密度n在t = 0下降。定量地,在p = 0.20处p = 0.24的n = 1 + p变为n = 0.20。相反,移动性不会明显地改变,如磁阻透露。我们的数据与yba_2cu_3o_y和la_(2-x)sr_xcuo_4上的最近的近期高场数据非常一致。三种不同铜酸盐衍生符的定量一致性表明,从1 + p到p的载流子密度下降是T = 0.We的伪影像转变的通用签名我们讨论了这些发现对于伪焦点阶段的性质的含义。

著录项

  • 来源
    《Physical Review. B, Condensed Matter》 |2017年第22期|224517.1-224517.12|共12页
  • 作者单位

    Departement de Physique and RQMP Universite de Sherbrooke Sherbrooke Quebec Canada J1K 2R1 Laboratoire de Physique et d'Etude des Materiaux Ecole Superieure de Physique et de Chimie Industrielles (CNRS) Paris 75005 France;

    Departement de Physique and RQMP Universite de Sherbrooke Sherbrooke Quebec Canada J1K 2R1;

    Departement de Physique and RQMP Universite de Sherbrooke Sherbrooke Quebec Canada J1K 2R1;

    Departement de Physique and RQMP Universite de Sherbrooke Sherbrooke Quebec Canada J1K 2R1;

    Departement de Physique and RQMP Universite de Sherbrooke Sherbrooke Quebec Canada J1K 2R1;

    Departement de Physique and RQMP Universite de Sherbrooke Sherbrooke Quebec Canada J1K 2R1;

    Texas Materials Institute University of Texas at Austin Austin Texas 78712 USA;

    High Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and Materials Radboud University 6525 ED Nijmegen The Netherlands;

    High Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and Materials Radboud University 6525 ED Nijmegen The Netherlands;

    Departement de Physique and RQMP Universite de Sherbrooke Sherbrooke Quebec Canada J1K 2R1;

    Departement de Physique and RQMP Universite de Sherbrooke Sherbrooke Quebec Canada J1K 2R1 Canadian Institute for Advanced Research Toronto Ontario Canada M5G 1Z8;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号