首页> 外文期刊>Physical review. B, Condensed Matter And Materals Physics >Fermi-surface transformation across the pseudogap critical point of the cuprate superconductor La_(1.6-x) Nd_(0.4)Sr_x CUO_4
【24h】

Fermi-surface transformation across the pseudogap critical point of the cuprate superconductor La_(1.6-x) Nd_(0.4)Sr_x CUO_4

机译:穿过铜酸盐超导体La_(1.6-x)Nd_(0.4)Sr_x CUO_4伪拟临界点的费米表面变换

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The electrical resistivity p and Hall coefficient R_h of the tetragonal single-layer cuprate La_(1.6-x)Nd_(0.4)Sr_xCuO_4 were measured in magnetic fields up to H = 37.5 T, large enough to access the normal state at T →0, for closely spaced dopings p across the pseudogap critical point at p~* = 0.23. Below p~*, both coefficients exhibit an upturn at low temperature, which gets more pronounced with decreasing p. Taken together, these upturns show that the normal-state carrier density n at T = 0 drops upon entering the pseudogap phase. Quantitatively, it goes from n = l + p at p = 0.24 to n = p at p = 0.20. By contrast, the mobility does not change appreciably, as revealed by the magnetoresistance. Our data are in excellent agreement with recent high-field data on YBa_2Cu_3O_y, and La_(2-x)Sr_xCuO_4. The quantitative consistency across three different cuprates shows that a drop in carrier density from 1 + p to p is a universal signature of the pseudogap transition at T = 0. We discuss the implication of these findings for the nature of the pseudogap phase.
机译:在高达H = 37.5 T的磁场中测量了四方单层铜酸盐La_(1.6-x)Nd_(0.4)Sr_xCuO_4的电阻率p和霍尔系数R_h,其大小足以在T→0时进入正常状态,在p〜* = 0.23处跨越伪间隙临界点的紧密排列的掺杂p。低于p〜*,这两个系数在低温下均呈上升趋势,随着p的减小,该系数会更加明显。总而言之,这些上升表明,进入伪间隙相时,T = 0时的正常状态载流子密度n下降。从数量上讲,它从p = 0.24时的n = l + p变为p = 0.20时的n = p。相反,如磁阻所揭示的,迁移率没有明显变化。我们的数据与YBa_2Cu_3O_y和La_(2-x)Sr_xCuO_4上的最新高场数据高度吻合。三种不同的铜酸盐的定量一致性表明,载流子密度从1 + p下降到p是T = 0时伪间隙跃迁的普遍特征。我们讨论了这些发现对伪间隙相性质的影响。

著录项

  • 来源
    《Physical review. B, Condensed Matter And Materals Physics》 |2017年第22期|224517.1-224517.12|共12页
  • 作者单位

    Departement de Physique and RQMP, Universite de Sherbrooke, Sherbrooke, Quebec, Canada JIK 2R1,Labomtoire de Physique et d'Etude des Materiaux, Ecole Superieure de Physique et de Chimie Industrielles (CNRS), Paris 75005, France;

    Departement de Physique and RQMP, Universite de Sherbrooke, Sherbrooke, Quebec, Canada JIK 2R1;

    Departement de Physique and RQMP, Universite de Sherbrooke, Sherbrooke, Quebec, Canada JIK 2R1;

    Departement de Physique and RQMP, Universite de Sherbrooke, Sherbrooke, Quebec, Canada JIK 2R1;

    Departement de Physique and RQMP, Universite de Sherbrooke, Sherbrooke, Quebec, Canada JIK 2R1;

    Departement de Physique and RQMP, Universite de Sherbrooke, Sherbrooke, Quebec, Canada JIK 2R1;

    Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712, USA;

    High Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and Materials, Radboud University, 6525 ED Nijmegen, The Netherlands;

    High Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and Materials, Radboud University, 6525 ED Nijmegen, The Netherlands;

    Departement de Physique and RQMP, Universite de Sherbrooke, Sherbrooke, Quebec, Canada JIK 2R1;

    Departement de Physique and RQMP, Universite de Sherbrooke, Sherbrooke, Quebec, Canada JIK 2R1,Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号