...
首页> 外文期刊>Physical review >Control of energy dissipation in sliding low-dimensional materials
【24h】

Control of energy dissipation in sliding low-dimensional materials

机译:滑动低维材料中的能量耗散控制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Frictional forces acting during the relative motion of nanosurfaces are the cause of energy loss and wear which limit an efficient assembly and yield of atomic-scale devices. In this research, we investigate the microscopic origin of the dissipative processes as a result of the frictional response, with the aim to control them in a subtle way. We recast the study of friction in terms of phonon modes of the system at the equilibrium, with no need to resort to dynamics simulations. As a case study, we here consider layer sliding in transition metal dichalcogenides thin films. We find that the population of specific atomic orbitals and the relative contribution of the atomic type to selected system vibrations are the crucial quantities which determine the frictional response in Iribological conditions. A reduced amount of energy dissipation is found when the bond character is more ionic and the layer sliding is realized by a faster motion of the chalcogen atoms. The individuated relevant parameters governing the energy dissipation can be used as descriptors in high-throughput calculations or machine learning engines to screen databases of frictional materials. The presented framework is general and can be promptly extended to the design of tribological materials with targeted frictional response, irrespective of the chemistry and atomic topology.
机译:在纳米孔的相对运动期间作用的摩擦力是能量损失和磨损的原因,其限制了原子尺度装置的有效组装和产量。在这项研究中,我们研究了由于摩擦响应而导致耗散过程的微观起源,目的是以微妙的方式控制它们。我们在均衡时重新开始对系统的声子模式的摩擦研究,无需诉诸动力学模拟。作为一个案例研究,我们在此考虑层在过渡金属二甲基化物薄膜中滑动。我们发现特定原子轨道群体和原子型对所选系统振动的相对贡献是确定Irbological病症中摩擦反应的关键衡量。当键合特征更加离子酸时,发现减少的能量耗散量,并且通过硫属原子的运动更快地实现层滑动。管理能源耗散的个性相关参数可用作高通量计算或机器学习发动机的描述符,以筛选摩擦材料数据库。呈现的框架是通用的,可以及时扩展到具有目标摩擦响应的摩擦学材料的设计,而不管化学和原子拓扑。

著录项

  • 来源
    《Physical review》 |2020年第8期|085409.1-085409.8|共8页
  • 作者单位

    Department of Control Engineering Facility of Electrical Engineering Czech Technical University in Prague Technicka 2 16627 Prague 6 Czech Republic;

    Department of Control Engineering Facility of Electrical Engineering Czech Technical University in Prague Technicka 2 16627 Prague 6 Czech Republic;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号