...
首页> 外文期刊>Physical review >Binding energy of the hybrid exciton in heterostructures of colloidal CdSe-ZnS quantum dots and two-dimensional transition metal dichalcogenides
【24h】

Binding energy of the hybrid exciton in heterostructures of colloidal CdSe-ZnS quantum dots and two-dimensional transition metal dichalcogenides

机译:胶体Cdse-ZnS量子点异质结构中的杂交激子的结合能量和二维过渡金属二甲基甲基化物

获取原文
获取原文并翻译 | 示例
           

摘要

Using continuum model calculations within the framework of the k · p approach and effective mass approximation, we theoretically study the physical properties of the hybrid exciton state in type-Ⅱ heterostructures composed of two-dimensional monolayer transition metal dichalcogenides (2D TMDs) and zero-dimensional (OD) CdSe-ZnS core-shell quantum dots (QDs). Interactions between an electron located in the lowest unoccupied molecule orbital (LUMO) state of the QD and a hole in the valence band of the 2D TMD along with their effects on charge distribution and exciton binding energy are sell-consistently calculated via solving the Schrodinger and Poisson equations. We show that (i) the hole wave function of the 2D TMD is tightly bounded within several unit cells by an electron located in the LUMO state of the QD while the distribution of the electron wave function is marginally changed by the Coulomb attraction from the hole in the 2D TMD; (ⅱ) the binding energies of the hybrid exciton decrease from 110 to 25 meV with the radius of the CdSe core increasing from 2 to 8 nm, which is several times lower than that of the exciton of 2D TMDs; and (ⅲ) the exciton binding energies of heterosiructures composed by different 2D TMD materials are similar. We explain the size dependence of exciton binding energy as the result of the delocalization of the electron wave function with QD size and attribute the similar binding energy obtained in different 2D/0D heterostructures to the weak dielectric screening effect of different 2D TMDs on electron-hole interaction. These results indicate that the physical properties of a hybrid exciton in 2D/0D heterostructures is dominated by the properties of the QD instead of the 2D TMDs. We further compare our calculated exciton binding energy with the corresponding experimental resu good agreement between experiment and theory provides evidence for the validity of our theoretical approach.
机译:在K·P接近框架内使用连续模型计算和有效的质量近似,理论上研究了由二维单层过渡金属二甲基甲基(2D TMDS)和零型Ⅱ型异质结构中杂交激子状态的物理性质。尺寸(OD)Cdse-ZnS核心壳量子点(QDS)。位于QD的最低未占用分子轨道(Lumo)状态的电子之间的相互作用以及2D TMD的价带中的孔以及它们对电荷分布和激子结合能量的效果是通过解决Schrodinger和施工泊松方程。我们表明(i)(i)2D TMD的空穴波浪功能在QD的LUMO状态下位于QD的LUMO状态下紧密界定,而电子波函数的分布由孔的库仑吸引力略微改变在2D TMD; (Ⅱ)杂交激子的结合能量从110〜25meV降低,CDSE核心的半径从2〜8nm增加,比2D TMDS的激子的几倍低几倍; (Ⅲ)由不同2D TMD材料组成的异质度的Exciton结合能量是相似的。我们解释了激子结合能量的尺寸依赖性,因为具有QD尺寸的电子波函数的临床化和将不同的2D / 0D异质结构中获得的类似结合能量归因于电子 - 孔上不同2D TMDS的弱介质筛选效果。相互作用。这些结果表明,2D / 0D异质结构中的杂化激子的物理性质由QD的性质代替2D TMD来支配。我们进一步将所计算的激子结合能与相应的实验结果进行比较;实验与理论之间的良好一致性提供了我们理论方法的有效性的证据。

著录项

  • 来源
    《Physical review》 |2020年第8期|085434.1-085434.11|共11页
  • 作者单位

    Department of Physics Beijing Key Lab for Metamaterials and Devices Key Laboratory of Terahertz Optoelectronics Ministry of Education Beijing Advanced Innovation Center for Imaging Theory and Technology Capital Normal University Beijing 100048 China;

    Department of Physics Beijing Key Lab for Metamaterials and Devices Key Laboratory of Terahertz Optoelectronics Ministry of Education Beijing Advanced Innovation Center for Imaging Theory and Technology Capital Normal University Beijing 100048 China;

    Department of Physics Beijing Key Lab for Metamaterials and Devices Key Laboratory of Terahertz Optoelectronics Ministry of Education Beijing Advanced Innovation Center for Imaging Theory and Technology Capital Normal University Beijing 100048 China;

    Department of Physics Beijing Key Lab for Metamaterials and Devices Key Laboratory of Terahertz Optoelectronics Ministry of Education Beijing Advanced Innovation Center for Imaging Theory and Technology Capital Normal University Beijing 100048 China;

    Department of Physics Beijing Key Lab for Metamaterials and Devices Key Laboratory of Terahertz Optoelectronics Ministry of Education Beijing Advanced Innovation Center for Imaging Theory and Technology Capital Normal University Beijing 100048 China;

    Department of Physics Beijing Key Lab for Metamaterials and Devices Key Laboratory of Terahertz Optoelectronics Ministry of Education Beijing Advanced Innovation Center for Imaging Theory and Technology Capital Normal University Beijing 100048 China;

    Department of Physics Beijing Key Lab for Metamaterials and Devices Key Laboratory of Terahertz Optoelectronics Ministry of Education Beijing Advanced Innovation Center for Imaging Theory and Technology Capital Normal University Beijing 100048 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号