...
首页> 外文期刊>Physical review >Charge fluctuations across the pressure-induced quantum phase transition in EuCu_2(Ge_(1-x)Si_x)_2
【24h】

Charge fluctuations across the pressure-induced quantum phase transition in EuCu_2(Ge_(1-x)Si_x)_2

机译:在EUCU_2(GE_(1-X)SI_X)中压力诱导量子相变的电荷波动(GE_(1-x)SI_x)_2

获取原文
获取原文并翻译 | 示例

摘要

Pressurizing strategically selected compositions of the EuCu_2(Ge_(1-x)Si_x)_2 series affords an opportunity for gaining microscopic insight into the ground-state properties and interplay between magnetism and valence fluctuations across a quantum critical point. This is investigated by way of systematic ~(151)Eu Moessbauer spectroscopy measurements on ⅹ = 0 and ⅹ = 0.5 compositions in the series, pressurized up to 7 GPa including variable temperature scans in the range 300-4.2 K. In EuCu_2Ge_2 the temperature and pressure dependences of the hyperfine interaction parameters indicate that both the magnetic and divalent state, Eu~(v+) where ⅴ = 2, are stable up to 6-7 GPa, thus serving as a useful reference. Whereas in the ⅹ = 0.5 composition which initially involves Eu~(2+), collapse of the magnetically ordered state is onset at ~1.3 GPa and there is emergence of a nonmagnetic intermediate valence state coexisting with the magnetically ordered state. This regime of mixed states is a precursor of a quantum phase transition to a nonmagnetic homogeneous intermediate valence state ⅴ ~ 2.45, across a quantum critical point at 3.6 GPa, suggesting a first-order phase transition. X-ray-diffraction pressure studies at 300 K up to 6 GPa of the ⅹ = 0.5 composition indicate there is no change in lattice symmetry from the tetragonal ThCr_2Si_2-type structure. There are also no obvious discontinuities in pressure dependences of the lattice parameters upon evolving through the quantum critical point at 3.6 GPa. Increasing pressure changes the starting Eu~(2+) valence monotonically, until the mean valence attains its largest value ⅴ ~ 2.45 indicative of enhanced charge fluctuations at the quantum critical point and plateaus thereafter. High-pressure resistance measurements at low temperatures down to 40 mK near the quantum critical point reveal no evidence for superconductivity.
机译:对策略性选择的EUCU_2(GE_(1-X)SI_X)_2系列的加压作用,提供了对地面性质的微观洞察的机会,并在量子临界点之间的磁性和价波动之间的相互作用。通过系统〜(151)Eu Moessbauer光谱测量来研究该系列中的χ= 0和0.5组合物,加压高达7GPa,包括300-4.2K的可变温度扫描。在eucu_2ge_2温度和温度下高浓缩相互作用参数的压力依赖性表明,磁性和二价状态,Eu〜(V +),其中ⅴ= 2,高达6-7GPa稳定,因此用作有用的参考。虽然在初始涉及Eu〜(2+)的χ= 0.5组合物中,磁有序状态的塌陷在〜1.3GPa上发作,并且存在与磁有序状态共存的非磁性中间价态的出现。这种混合状态的该制度是量子相转变的前体,其在3.6GPa的量子临界点横跨3.6GPa的量子临界点,表明一阶相转变。 X射线 - 衍射压力研究以300k至6gPa的χ= 0.5组合物表示从四边形THCR_2SI_2型结构中没有变化的晶格对称性。在3.6GPa的量子临界点时,晶格参数的压力依赖性也没有明显的不连续性。增加压力在单调上改变起始欧盟〜(2+)价值,直到平均值达到其最大值χ〜2.45,指示大量子临界点和平底调的增强电荷波动。在量子临界点的低温下低温电阻测量值下降至40 mk,揭示了超导性的证据。

著录项

  • 来源
    《Physical review 》 |2020年第20期| 205127.1-205127.10| 共10页
  • 作者单位

    Ⅱ. Physikalisches Institut Universitaet zu Koeln Zuelpicher Str. 77 50937 Koeln Germany Electrical Engineering Department The Higher Institute of Sciences and Technology Ajdabiya Libya;

    Ⅱ. Physikalisches Institut Universitaet zu Koeln Zuelpicher Str. 77 50937 Koeln Germany;

    Max-Planck-Institute for Chemical Physics of Solids Noethnitzer Str. 40 01187 Dresden Germany;

    Department of Physics Indian Institute of Technology Kanpur 208016 India;

    Department of Physics University of Johannesburg PO Box 524 Auckland Park 2006 Johannesburg South Africa;

    Institute of Physics Academy of Sciences of the Czech Republic Na Slovance 1999/2 Prague 8 Czech Republic;

    Department of Condensed Matter Physics Faculty of Mathematics and Physics Charles University Ke Karlovu 5 Prague 2 Czech Republic;

    Department of Condensed Matter Physics Faculty of Mathematics and Physics Charles University Ke Karlovu 5 Prague 2 Czech Republic;

    Ⅱ. Physikalisches Institut Universitaet zu Koeln Zuelpicher Str. 77 50937 Koeln Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号