...
首页> 外文期刊>Physical review. B, Condensed Matter And Materials Physics >Molecular dynamics simulation of Ga penetration along ∑5 symmetric tilt grain boundaries in an Al bicrystal
【24h】

Molecular dynamics simulation of Ga penetration along ∑5 symmetric tilt grain boundaries in an Al bicrystal

机译:Ga在Al双晶中沿∑5对称倾斜晶界渗透的分子动力学模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Liquid metal embrittlement (LME) is a common feature of systems in which a low melting point liquid metal is in contact with another, higher melting point, polycrystalline metal. While different systems exhibit different LME fracture characteristics, the penetration of nanometer-thick liquid metal films along the grain boundary is one of the hallmarks of the process. We employ EAM potentials optimized for Al-Ga binary alloys in a series of molecular dynamics simulations of an Al bicrystal (with a ∑5 36.9°(301)/[010] symmetric tilt boundary) in contact with liquid Ga with and without an applied stress. Our simulations clarify the mechanism of LME and how it is affected by applied stresses. The interplay of stress and penetrating Ga atoms leads to the nucleation of a train of dislocations on the grain boundary below the liquid groove root which climbs down the grain boundary at a nearly constant rate. The dislocation climb mechanism and the Ga penetration are coupled. While the dislocations do relax part of the applied stress, the residual stresses keep the grain boundary open, thereby allowing more, fast Ga transport to the penetration front (i.e., Ga layer thickening process). The coupled Ga transport and "dislocation climb" is the key to the anomalously fast, time-independent penetration of Ga along grain boundaries in Al. The simulations explain a wide range of experimental observations of LME in the Al-Ga literature.
机译:液态金属脆化(LME)是低熔点液态金属与另一种更高熔点的多晶金属接触的系统的共同特征。虽然不同的系统表现出不同的LME断裂特性,但纳米厚的液态金属膜沿晶界的渗透是该过程的标志之一。我们在针对铝双晶(具有∑5 36.9°(301)/ [010]对称倾斜边界)与液体Ga接触和不接触而进行的一系列分子动力学模拟中,采用了针对Al-Ga二元合金优化的EAM势强调。我们的仿真阐明了LME的机理以及它如何受到施加应力的影响。应力和穿透性Ga原子的相互作用导致液槽根下方晶界上的一系列位错成核,并以几乎恒定的速率沿晶界下降。位错爬升机制和Ga穿透是耦合的。当位错确实使施加的应力部分松弛时,残余应力保持晶界开放,从而允许更多,更快的Ga传输到穿透前沿(即Ga层增厚过程)。 Ga传输和“位错爬升”耦合是Ga沿Al中晶界异常快速,非时间依赖地渗透的关键。这些模拟解释了Al-Ga文献中LME的广泛实验观察结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号