首页> 外文期刊>Physical review >Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses
【24h】

Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses

机译:硫族化物玻璃跳跃传输中高场能量增益的阈值切换机制

获取原文
获取原文并翻译 | 示例
           

摘要

Chalcogenide glasses are widely used in phase-change nonvolatile memories and in optical recording media for their ability to rapidly change their structure to crystalline, thus obtaining different electrical resistance and optical reflectivity. Chalcogenide glasses universally display threshold switching, that is a sudden, reversible transition from a high-resistivity state to a low-resistivity state observed in the current-voltage (I-V) characteristic. Since threshold switching controls the operating voltage and speed of phase-change memories, the predictability of the switching voltage, current, and speed is of critical importance for selecting the proper chalcogenide material for memory applications. Although threshold switching has long been recognized to be an electronic process with an intimate relation to localized states, its detailed physical mechanism is still not clear. In this work, threshold switching is explained by the field-induced energy increase in electrons in their hopping transport, moderated by the energy relaxation due to phonon-electron interaction. The energy increase leads to an enhancement of conductivity and a collapse of the electric field within the amorphous chalcogenide layer, accounting for the observed negative differential resistance at switching. Threshold switching is found to obey to a constant electrical-power condition. The proposed model generally applies to low-mobility semiconductors featuring a deep Fermi level and hopping-type conduction, and can predict the thickness, temperature, and material dependence of threshold voltage and current.
机译:硫属化物玻璃由于其迅速将其结构改变为结晶的能力而广泛用于相变非易失性存储器和光学记录介质中,从而获得不同的电阻和光学反射率。硫族化物玻璃普遍显示阈值切换,即在电流-电压(I-V)特性中观察到的从高电阻率状态到低电阻率状态的突然可逆转变。由于阈值开关控制相变存储器的工作电压和速度,因此开关电压,电流和速度的可预测性对于为存储器应用选择合适的硫族化物材料至关重要。尽管阈值切换早已被认为是与局部状态有密切关系的电子过程,但其详细的物理机制仍不清楚。在这项工作中,阈值切换是由电子在其跃迁传输中由场感应的能量增加所解释的,并由声子-电子相互作用引起的能量弛豫来缓和。能量的增加导致非晶硫族化物层内的电导率增加和电场崩溃,这解释了在切换时观察到的负微分电阻。发现阈值切换服从恒定的电力条件。所提出的模型通常适用于具有深费米能级和跳跃型导电性的低迁移率半导体,并且可以预测厚度,温度以及阈值电压和电流的材料依赖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号