首页> 外文期刊>Physical review >Interface properties of magnetic tunnel junction Lao_(0.7)Sr_(0.3)MnO_3/ SrTiO_3 superlattices studied by standing-wave excited photoemission spectroscopy
【24h】

Interface properties of magnetic tunnel junction Lao_(0.7)Sr_(0.3)MnO_3/ SrTiO_3 superlattices studied by standing-wave excited photoemission spectroscopy

机译:驻波激发光发射光谱法研究磁性隧道结Lao_(0.7)Sr_(0.3)MnO_3 / SrTiO_3超晶格的界面性质

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The chemical and electronic-structure profiles of magnetic tunnel junction (MTJ) (LSMO/STO) superlattices have been quantitatively determined via soft and hard x-ray standing-wave excited photoemission, x-ray absorption and x-ray reflectivity, in conjunction with x-ray optical and core-hole multiplet theoretical modeling. Epitaxial superlattice samples consisting of 48 and 120 bilayers of LSMO and STO, each nominally four unit cells thick, and still exhibiting LSMO ferromagnetism, were studied. By varying the incidence angle around the superlattice Bragg condition, the standing wave was moved vertically through the interfaces. By comparing experiment to x-ray optical calculations, the detailed chemical profile of the super-lattice and its interfaces was quantitatively derived with angstrom precision. The multilayers were found to have a small -6% change in periodicity from top to bottom. Interface compositional mixing or roughness over ~6 A was also found, as well as a significant change in the soft x-ray optical coefficients of LSMO near the interface. The soft x-ray photoemission data exhibit a shift in the position of the Mn 3p peak near the interface, which is not observed for Mn 3s. Combined with core-hole multiplet theory incorporating Jahn-Teller distortion, these results indicate a change in the Mn bonding state near the LSMO/STO interface. Our results thus further clarify the reduced (MTJ) performance of LSMO/STO compared to ideal theoretical expectations.
机译:磁性隧道结(MTJ)(LSMO / STO)超晶格的化学和电子结构轮廓已通过软和硬X射线驻波激发的光发射,X射线吸收和X射线反射率以及X射线光学和核孔多重态理论建模。研究了由48个和120个双层LSMO和STO组成的外延超晶格样品,每个样品名义上为4个单位晶格的厚度,并且仍表现出LSMO铁磁性。通过改变超晶格布拉格条件附近的入射角,驻波在界面上垂直移动。通过将实验与X射线光学计算进行比较,以埃精确度定量得出了超晶格及其界面的详细化学分布图。发现多层从顶部到底部的周期变化很小-6%。还发现界面成分混合或粗糙度超过〜6 A,以及界面附近LSMO的软X射线光学系数有显着变化。软X射线光发射数据显示出界面附近的Mn 3p峰的位置发生了偏移,而对于Mn 3s则未观察到。结合结合了Jahn-Teller变形的核孔多重态理论,这些结果表明LSMO / STO界面附近的Mn键态发生了变化。因此,我们的结果进一步阐明了与理想理论预期相比,LSMO / STO的(MTJ)性能降低。

著录项

  • 来源
    《Physical review》 |2010年第20期|p.205116.1-205116.9|共9页
  • 作者单位

    Department of Physics, University of California-Davis, Davis, California 95616, USA,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;

    rnMaterials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA,Lehrstuhl fuer Physikalische Chemie II, Universitaet Erlangen-Nurnberg, Egerlandstrass 3, 91058, Erlangen, Germany;

    rnMaterials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA,Institut fuer Anorganische und Analytische Chemie, Johannes Gutenberg-Universitaet, 55099 Mainz, Germany;

    rnIBM Almaden Research Center, San Jose, California 95120, USA;

    rnFaculty of Science and Technology, MESA + Institute for Nanotechnology, University of Twente, Enschede, The Netherlands;

    rnAdvanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;

    rnAdvanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;

    rnNIMS Beamline Station at SPring-8, National Institute for Materials Science, Hyogo 679-5148, Japan;

    rnNIMS Beamline Station at SPring-8, National Institute for Materials Science, Hyogo 679-5148, Japan;

    rnNIMS Beamline Station at SPring-8, National Institute for Materials Science, Hyogo 679-5148, Japan;

    rnAdvanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;

    rnMaterials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;

    rnDepartment of Chemistry, Utrecht University, 3584 CA Utrecht, The Netherlands;

    rnFaculty of Science and Technology, MESA + Institute for Nanotechnology, University of Twente, Enschede, The Netherlands;

    rnFaculty of Science and Technology, MESA + Institute for Nanotechnology, University of Twente, Enschede, The Netherlands;

    rnMaterials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA,Department of Physics, University of California-Davis, Davis, California 95616, USA Department of Physics, University of California-Davis, Davis, California 95616, USA,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;

    rnDepartment of Physics, University of California-Davis, Davis, California 95616, USA,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    electron states at surfaces and interfaces; superlattices; theory, models, and numerical simulation;

    机译:表面和界面的电子态;超晶格理论;模型和数值模拟;

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号