...
首页> 外文期刊>Physical review >Hole-spin initialization and relaxation times in InAs/GaAs quantum dots
【24h】

Hole-spin initialization and relaxation times in InAs/GaAs quantum dots

机译:InAs / GaAs量子点中的空穴自旋初始化和弛豫时间

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We study, at low temperature and zero magnetic field, the hole-spin dynamics in InAs/GaAs quantum dots. We measure the hole-spin relaxation time at a time scale longer than the dephasing time (about ten nanoseconds), imposed by the hole-nuclear hyperfine coupling. We use a pump-probe configuration and compare two experimental techniques based on differential absorption. The first one works in the time domain, and the second one is a new experimental method, the dark-bright time-scanning spectroscopy (DTS), working in the frequency domain. The measured hole-spin relaxation times, using these two techniques, are very similar, in the order of T_N~h ≈1 μs. It is mainly imposed by the inhomogeneous hole hyperfine coupling in the hole localization volume. The DTS technique allows us also to measure the hole-spin initialization time τi. The hole spin is initialized by a periodic train of circularly polarized pulses at 76 MHz; we have observed that τi decreases as the power density increases, and we have measured a minimum value of τi ≈100 ns in good agreement with a simple model [seeB. Eble, P. Desfonds, F. Fras, F. Bernardot, C. Testelin, M. Chamarro, A. Miard, and A. Lemaitre, Phys. Rev. B 81, 045322 (2010)].
机译:我们在低温和零磁场下研究InAs / GaAs量子点中的空穴自旋动力学。我们测量孔自旋弛豫时间的时间尺度要长于由孔核超精细耦合施加的移相时间(约十纳秒)。我们使用泵探针配置,并比较了基于差分吸收的两种实验技术。第一个是在时域中工作的,第二个是在频域中工作的新的实验方法,即暗亮时间扫描光谱法(DTS)。使用这两种技术测得的空穴自旋弛豫时间非常相似,约为T_N〜h≈1μs。它主要是由孔局部体积中不均匀的孔超精细耦合引起的。 DTS技术还允许我们测量空穴旋转的初始化时间τi。空穴自旋通过周期性的76 MHz圆极化脉冲序列初始化;我们已经观察到τi随着功率密度的增加而减小,并且我们已经测量了τi≈100ns的最小值,这与一个简单的模型非常吻合[参见B。 Eble,P。Desfonds,F。Fras,F。Bernardot,C。Testelin,M。Chamarro,A。Miard和A. Lemaitre,物理学。 B 81,045322(2010)。

著录项

  • 来源
    《Physical review》 |2011年第12期|p.125431.1-125431.7|共7页
  • 作者单位

    Institut des NanoSciences de Paris, UPMC Univ Paris 06, CNRS UMR 7588, 4 Place Jussieu, F-75252 Paris Cedex 05, France;

    Institut des NanoSciences de Paris, UPMC Univ Paris 06, CNRS UMR 7588, 4 Place Jussieu, F-75252 Paris Cedex 05, France;

    Institut des NanoSciences de Paris, UPMC Univ Paris 06, CNRS UMR 7588, 4 Place Jussieu, F-75252 Paris Cedex 05, France;

    Institut des NanoSciences de Paris, UPMC Univ Paris 06, CNRS UMR 7588, 4 Place Jussieu, F-75252 Paris Cedex 05, France;

    Institut des NanoSciences de Paris, UPMC Univ Paris 06, CNRS UMR 7588, 4 Place Jussieu, F-75252 Paris Cedex 05, France;

    Institut des NanoSciences de Paris, UPMC Univ Paris 06, CNRS UMR 7588, 4 Place Jussieu, F-75252 Paris Cedex 05, France;

    Laboratoire de Photonique et Nanostructures, CNRS, Route de Nozay, F-91460 Marcoussis, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    spin relaxation and scattering; optical creation of spin polarized carriers; quantum dots; Ⅲ-Ⅴ semiconductors;

    机译:自旋弛豫和散射;自旋极化载体的光学产生;量子点;Ⅲ-Ⅴ族半导体;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号