首页> 外文期刊>Physical review >Building block modeling technique: Application to ternary chalcogenide glasses g-Ge_2As_4Se_4 and g-AsGe_0.8Se_0.8
【24h】

Building block modeling technique: Application to ternary chalcogenide glasses g-Ge_2As_4Se_4 and g-AsGe_0.8Se_0.8

机译:构建模块建模技术:在三族硫族化物玻璃g-Ge_2As_4Se_4和g-AsGe_0.8Se_0.8中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Owing to promising optoelectronic and electronic features,1-3chalcogenide glasses have drawn extensive atten tion during the last decade. However, the lack of translational periodicity makes it hard to predict the microscopic structure of these glasses. Experimental results indicate that chemical order is broken and homopolar bonds are observed in chalcogenide glasses.4-6 To further understand the topology and its role in determining optoelectronic and electronic properties, realistic atomistic models of these glasses are required. One possible way to obtain atomic models for glasses is the standard molecular dynamic (MD) "melt and quench" method. This method seems to work when there are fundamental units existing in both liquid and glass. For simple building blocks (BBs) (involving only a few atoms), realistic models are obtained after a long liquid equilibration and a slow quench procedure. However, if the BBs are complex, such as the case in ternary alloys, it sometimes happens that the melt and quench method fails to obtain the correct structure due to the limitation of short simulation times. If a priori information (such as chemical order, correct coordination number, etc.) is unknown for a target material, the melt and quench technique usually starts with random initial configurations and the calculations may be extremely time consuming for large systems. Also, very large cells may be required if the structural order is complex. Our earlier studies indicated that the melt and quench method has difficulties in generating realistic atomic models of Ge-As-Se glasses (more details are discussed in Ref. 7). Thus, in this case, it is of interest to develop a new modeling technique.
机译:由于有希望的光电和电子特性,1-3硫族化物玻璃在过去十年中引起了广泛的关注。然而,缺乏平移周期性使得难以预测这些眼镜的微观结构。实验结果表明,在硫族化物玻璃中化学顺序被破坏并且观察到同极性键。4-6为了进一步了解拓扑结构及其在确定光电和电子性质中的作用,需要这些玻璃的真实原子模型。获得玻璃原子模型的一种可能方法是标准分子动力学(MD)“熔化和淬灭”方法。当液体和玻璃中都存在基本单元时,此方法似乎可行。对于简单的构造块(BBs)(仅涉及几个原子),在长时间的液体平衡和缓慢的淬灭过程后即可获得逼真的模型。但是,如果BBs很复杂,例如在三元合金中,由于短模拟时间的限制,有时会发生熔化和淬火方法无法获得正确的组织的情况。如果目标材料的先验信息(例如化学顺序,正确的配位数等)未知,则熔化和淬灭技术通常从随机的初始配置开始,对于大型系统而言,计算可能会非常耗时。另外,如果结构顺序复杂,则可能需要非常大的单元。我们较早的研究表明,熔融淬火方法难以生成逼真的Ge-As-Se玻璃原子模型(更多细节在参考文献7中进行了讨论)。因此,在这种情况下,有兴趣开发一种新的建模技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号