首页> 外文期刊>Physical review >Influence of surface passivation on the friction and wear behavior of ultrananocry stalline diamond and tetrahedral amorphous carbon thin films
【24h】

Influence of surface passivation on the friction and wear behavior of ultrananocry stalline diamond and tetrahedral amorphous carbon thin films

机译:表面钝化对超纳米晶丁苯金刚石和四面体非晶碳薄膜摩擦磨损性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Highly sp~3-bonded, nearly hydrogen-free carbon-based materials can exhibit extremely low friction and wear in the absence of any liquid lubricant, but this physical behavior is limited by the vapor environment. The effect of water vapor on friction and wear is examined as a function of applied normal force for two such materials in thin film form: one that is fully amorphous in structure (tetrahedral amorphous carbon, or ta-C) and one that is polycrystalline with < 10 nm grains [ultrananocrystalline diamond (UNCD)]. Tribologically induced changes in the chemistry and carbon bond hybridization at the surface are correlated with the effect of the sliding environment and loading conditions through ex situ, spatially resolved near-edge x-ray absorption fine structure (NEXAFS) spectroscopy. At sufficiently high relative humidity (RH) levels and/or sufficiently low loads, both films quickly achieve a low steady-state friction coefficient and subsequently exhibit low wear. For both films, the number of cycles necessary to reach the steady-state is progressively reduced for increasing RH levels. Worn regions formed at lower RH and higher loads have a higher concentration of chemisorbed oxygen than those formed at higher RH, with the oxygen singly bonded as hydroxyl groups (C-OH). While some carbon rehybridization from sp~3 to disordered sp2 bonding is observed, no crystalline graphite formation is observed for either film. Rather, the primary solid-lubrication mechanism is the passivation of dangling bonds by OH and H from the dissociation of vapor-phase H_2O. This vapor-phase lubrication mechanism is highly effective, producing friction coefficients as low as 0.078 for ta-C and 0.008 for UNCD, and wear rates requiring thousands of sliding passes to produce a few nanometers of wear.
机译:在没有任何液体润滑剂的情况下,高度sp〜3​​键合,几乎不含氢的碳基材料可以表现出极低的摩擦和磨损,但是这种物理行为受到蒸汽环境的限制。对于两种薄膜形式的材料,检查了水蒸气对摩擦和磨损的影响是否与所施加的法向力有关:一种在结构上是完全无定形的(四面体无定形碳,或ta-C),而另一种在结构上是多晶的。小于10 nm的晶粒[超微晶金刚石(UNCD)]。摩擦学引起的表面化学变化和碳键杂化与滑动环境和加载条件的影响相关,这是通过异位,空间分辨的近边缘X射线吸收精细结构(NEXAFS)光谱学得出的。在足够高的相对湿度(RH)水平和/或足够低的负载下,两张薄膜都很快达到了低稳态摩擦系数,随后呈现出低磨损。对于两种膜,为了增加RH水平,逐渐减少达到稳态所需的循环数。在较低的RH和较高的负载下形成的磨损区域比在较高的RH下形成的磨损区域具有更高的化学吸附氧浓度,其中氧单独作为羟基(C-OH)键合。尽管观察到了一些碳从sp〜3杂化到sp2键无序的现象,但对于任何一种膜都没有观察到结晶石墨的形成。而是,主要的固体润滑机理是由于气相H_2O的离解而使OH和H使悬挂键钝化。这种气相润滑机制非常有效,ta-C的摩擦系数低至0.078,UNCD的摩擦系数低至0.008,并且磨损率需要数千次滑动才能产生几纳米的磨损。

著录项

  • 来源
    《Physical review》 |2012年第15期|p.155448.1-155448.13|共13页
  • 作者单位

    Physics & Astronomy Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA,National Institute of Standards and Technology;

    Mechanical Engineering Department, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA;

    Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA;

    Sandia National Laboratory, Albuquerque, New Mexico 87185, USA;

    Sandia National Laboratory, Albuquerque, New Mexico 87185, USA;

    Physics Department, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA;

    Mechanical and Aerospace Engineering Department, University of Florida, Gainesville, Florida 32611, USA;

    Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    tribology and hardness; scanning auger microscopy, photoelectron microscopy;

    机译:摩擦学和硬度;扫描螺旋显微镜;光电子显微镜;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号