...
首页> 外文期刊>Physical review >Long-time relaxation of ion-bombarded silicon studied with the kinetic activation-relaxation technique: Microscopic description of slow aging in a disordered system
【24h】

Long-time relaxation of ion-bombarded silicon studied with the kinetic activation-relaxation technique: Microscopic description of slow aging in a disordered system

机译:用动力学活化松弛技术研究离子轰击硅的长时间弛豫:无序系统中缓慢老化的微观描述

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Diffusion and relaxation of defects in bulk systems is a complex process that can only be accessed directly through simulations. We characterize the mechanisms of low-temperature aging in self-implanted crystalline silicon, a model system used extensively to characterize both amorphization and return to equilibrium processes, over 11 orders of magnitudes in time, from 10 ps to 1 s, using a combination of molecular dynamics and kinetic activation-relaxation technique simulations. These simulations allow us to reassess the atomistic mechanisms responsible for structural relaxations and for the overall logarithmic relaxation, a process observed in a large number of disordered systems and observed here over the whole simulation range. This allows us to identify three microscopic regimes, annihilation, aggregation, and reconstruction, in the evolution of defects and to propose atomistic justification for an analytical model of logarithmic relaxation. Furthermore, we show that growing activation barriers and configurational space exploration are kinetically limiting the system to a logarithmic relaxation. Overall, our long-time simulations do not support the amorphous cluster model but point rather to a relaxation driven by elastic interactions between defect complexes of all sizes.
机译:散装系统中缺陷的扩散和松弛是一个复杂的过程,只能通过模拟直接访问。我们描述了自植入晶体硅中低温老化的机制,该模型系统广泛用于表征非晶化和恢复平衡过程,在11个数量级的时间范围内(从10 ps到1 s),结合使用分子动力学和动力学活化松弛技术模拟。这些模拟使我们能够重新评估造成结构弛豫和整体对数弛豫的原子机理,这一过程在大量无序系统中观察到,并且在整个模拟范围内都观察到。这使我们能够确定缺陷演变过程中的三种微观状态,即ni灭,聚集和重建,并为对数弛豫的分析模型提出原子论依据。此外,我们表明,增长的激活障碍和配置空间探索正在动力学上将系统限制为对数弛豫。总的来说,我们的长期仿真不支持非晶簇模型,而是指出了各种尺寸缺陷复合物之间的弹性相互作用所驱动的松弛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号