首页> 外文期刊>Computational Materials Science >Diffusion properties of Fe-C systems studied by using kinetic activation-relaxation technique
【24h】

Diffusion properties of Fe-C systems studied by using kinetic activation-relaxation technique

机译:动力学弛豫技术研究Fe-C体系的扩散特性

获取原文
获取原文并翻译 | 示例
           

摘要

Diffusion of carbon in iron is associated with processes such as carburization and the production of steels. In this work, the kinetic activation-relaxation technique (k-ART) - an off-lattice self-learning kinetic Monte Carlo (KMC) algorithm - is used to study this phenomenon over long time scales. Coupling the open-ended ART nouveau technique to generate on-the-fly activated events and NAUTY, a topological classification for cataloging, k-ART reaches timescales that range from microseconds to seconds while fully taking into account long-range elastic effects and complex events, characterizing in details the energy landscape in a way that cannot be done with standard molecular dynamics (MD) or KMC. The diffusion mechanisms and pathways for one to four carbon interstitials, and a single vacancy coupled with one to several carbons are studied. In bulk Fe, k-ART predicts correctly the 0.815 eV barrier for a single C-interstitial as well as the stressed induced energy-barrier distribution around this value for 2 and 4 C interstitials. For vacancy-carbon complex, simulations recover the DFT-predicted ground state. K-ART also identifies a trapping mechanism for the vacancy through the formation of a dynamical complex, involving C and neighboring Fe atoms, characterized by hops over barriers ranging from similar to 0.41 to similar to 0.72 eV that correspond, at room temperature, to trapping time of hours. At high temperatures, this complex can be broken by crossing a 1.5 eV barrier, leading to a state similar to 0.8 eV higher than the ground state, allowing diffusion of the vacancy. A less stable complex is formed when a second C is added, characterized by a large number of bound excited states that occupy two cells. It can be broken into a V-C complex and a single free C through a 1.11 eV barrier. (C) 2015 Elsevier B.V. All rights reserved.
机译:铁中碳的扩散与渗碳和钢的生产有关。在这项工作中,动力学激活松弛技术(k-ART)-晶格自学习动力学蒙特卡洛(KMC)算法-用于长时间研究此现象。结合开放式ART nouveau技术以生成即时激活事件和NAUTY(用于分类的拓扑分类),k-ART的时标范围从微秒到秒,同时充分考虑了远程弹性效应和复杂事件,以无法通过标准分子动力学(MD)或KMC实现的方式详细描述能量格局。研究了一到四个碳间隙的扩散机理和途径,以及一个空位加上一到几个碳。在散装铁中,k-ART可以正确预测单个C间隙的0.815 eV势垒,以及2 C和4 C间隙在该值附近的应力感应能量势垒分布。对于空位碳复合物,模拟恢复了DFT预测的基态。 K-ART还通过形成涉及C和相邻Fe原子的动力学复合物来确定空位的俘获机制,其特征是跃迁越过了在室温下对应于俘获的范围从约0.41到约0.72 eV的势垒。小时的时间。在高温下,可以通过越过1.5 eV的势垒来破坏该复合物,导致其状态比基态高0.8 eV,从而允许空位扩散。当添加第二个C时会形成不稳定的络合物,其特征是占据两个单元的大量束缚激发态。可以通过1.11 eV势垒将其分解为V-C复合体和单个自由C。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号