...
首页> 外文期刊>Physical review >Suppression of T_C by overdoped Li in the diluted ferromagnetic semiconductor Li_(1+y)(Zn_(1-x)Mn_x)P: A μSR investigation
【24h】

Suppression of T_C by overdoped Li in the diluted ferromagnetic semiconductor Li_(1+y)(Zn_(1-x)Mn_x)P: A μSR investigation

机译:稀释铁磁半导体Li_(1 + y)(Zn_(1-x)Mn_x)P中过掺杂的Li对T_C的抑制作用:μSR研究

获取原文
获取原文并翻译 | 示例

摘要

We use muon spin relaxation (μSR) to investigate the magnetic properties of a bulk form diluted ferromagnetic semiconductor (DFS) Li_(1.15)(Zn_(0.9)Mn_(0.1))P with T_C ~ 22 K. μSR results confirm the gradual development of ferromagnetic ordering below T_C with a nearly 100% magnetic ordered volume. Despite its low carrier density, the relation between static internal field and Curie temperature observed for Li(Zn,Mn)P is consistent with the trend found in (Ga,Mn)As and other bulk DFSs, indicating these systems share a common mechanism for the ferromagnetic exchange interaction. Li_(1+y)(Zn_(1-x)Mn_x)P has the advantage of decoupled carrier and spin doping, where Mn~(2+) substitution for Zn~(2+) introduces spins and Li~+ off-stoichiometry provides carriers. This advantage enables us to investigate the influence of overdoped Li on the ferromagnetic ordered state. Overdoping Li suppresses both T_C and saturation moments for a certain amount of spins, which indicates that more carriers are detrimental to the ferromagnetic exchange interaction, and that a delicate balance between charge and spin densities is required to achieve highest T_C.
机译:我们使用μ自旋弛豫(μSR)研究了T_C〜22 K的块状稀释铁磁半导体Li_(1.15)(Zn_(0.9)Mn_(0.1))P的磁性。μSR结果证实了其逐渐发展低于T_C且具有近100%的磁性有序体积的铁磁有序。尽管Li(Zn,Mn)P的载流子密度较低,但静态内场与居里温度之间的关系与(Ga,Mn)As和其他大体积DFS中的趋势一致,表明这些系统具有共同的机理铁磁交换相互作用。 Li_(1 + y)(Zn_(1-x)Mn_x)P具有解耦载流子和自旋掺杂的优势,其中Zn〜(2+)的Mn〜(2+)替代会引入自旋,而Li〜+的化学计量偏离提供载体。这个优点使我们能够研究过量掺杂的Li对铁磁有序状态的影响。 Li的过量掺杂抑制了一定数量的自旋,同时抑制了T_C和饱和矩,这表明更多的载流子对铁磁交换相互作用有害,并且需要电荷和自旋密度之间的精细平衡才能达到最高的T_C。

著录项

  • 来源
    《Physical review 》 |2014年第8期| 085123.1-085123.6| 共6页
  • 作者单位

    Department of Physics, Zhejiang University, Hangzhou 310027, China;

    Department of Physics, Zhejiang University, Hangzhou 310027, China;

    Department of Physics, Zhejiang University, Hangzhou 310027, China;

    Department of Physics, Zhejiang University, Hangzhou 310027, China;

    Department of Physics, Zhejiang University, Hangzhou 310027, China;

    Department of Physics, Zhejiang University, Hangzhou 310027, China;

    Department of Physics, Zhejiang University, Hangzhou 310027, China;

    Department of Physics, Columbia University, New York, New York 10027, USA,Paul Scherrer Institute, Laboratory for Muon Spin Spectroscopy, CH-5232 Villigen PSI, Switzerland;

    Department of Physics, Columbia University, New York, New York 10027, USA;

    Department of Physics, Columbia University, New York, New York 10027, USA;

    Department of Physics, Columbia University, New York, New York 10027, USA;

    Paul Scherrer Institute, Laboratory for Muon Spin Spectroscopy, CH-5232 Villigen PSI, Switzerland;

    Paul Scherrer Institute, Laboratory for Muon Spin Spectroscopy, CH-5232 Villigen PSI, Switzerland;

    Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

    Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada L8S 4M1;

    Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada L8S 4M1,Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8;

    Department of Physics, Hangzhou Normal University, Hangzhou 310016, China;

    Department of Physics, Hangzhou Normal University, Hangzhou 310016, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    magnetic semiconductors; other nonmetals; muon spin rotation and relaxation;

    机译:磁性半导体其他非金属;介子旋转和松弛;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号