...
首页> 外文期刊>Physical review >Ab initio electronic transport model with explicit solution to the linearized Boltzmann transport equation
【24h】

Ab initio electronic transport model with explicit solution to the linearized Boltzmann transport equation

机译:从头开始的电子输运模型,具有线性化玻尔兹曼输运方程的显式解

获取原文
获取原文并翻译 | 示例
           

摘要

Accurate models of carrier transport are essential for describing the electronic properties of semiconductor materials. To the best of our knowledge, the current models following the framework of the Boltzmann transport equation (BTE) either rely heavily on experimental data (i.e., semiempirical), or utilize simplifying assumptions, such as the constant relaxation time approximation (BTE-cRTA). While these models offer valuable physical insights and accurate calculations of transport properties in some cases, they often lack sufficient accuracy-particularly in capturing the correct trends with temperature and carrier concentration. We present here a transport model for calculating low-field electrical drift mobility and Seebeck coefficient of n-type semiconductors, by explicitly considering relevant physical phenomena (i.e., elastic and inelastic scattering mechanisms). We first rewrite expressions for the rates of elastic scattering mechanisms, in terms of ab initio properties, such as the band structure, density of states, and polar optical phonon frequency. We then solve the linear BTE to obtain the perturbation to the electron distribution-resulting from the dominant scattering mechanisms-and use this to calculate the overall mobility and Seebeck coefficient. Therefore, we have developed an ab initio model for calculating mobility and Seebeck coefficient using the Boltzmann transport (aMoBT) equation. Using aMoBT, we accurately calculate electrical transport properties of the compound n-type semiconductors, GaAs and InN, over various ranges of temperature and carrier concentration. aMoBT is fully predictive and provides high accuracy when compared to experimental measurements on both GaAs and InN, and vastly outperforms both semiempirical models and the BTE-cRTA. Therefore, we assert that this approach represents a first step towards a fully ab initio carrier transport model that is valid in all compound semiconductors.
机译:准确的载流子传输模型对于描述半导体材料的电子特性至关重要。据我们所知,遵循玻耳兹曼输运方程(BTE)框架的当前模型要么严重依赖于实验数据(即半经验的),要么利用简化的假设,例如恒定弛豫时间近似值(BTE-cRTA) 。尽管这些模型在某些情况下提供有价值的物理见解和传输特性的精确计算,但它们通常缺乏足够的准确性,尤其是在捕获温度和载流子浓度的正确趋势时。通过明确考虑相关的物理现象(即弹性和非弹性散射机制),我们在这里提出一种用于计算n型半导体的低场电漂移迁移率和塞贝克系数的传输模型。我们首先根据从头算特性(例如能带结构,态密度和极性光子声子频率)来重写弹性散射机制速率的表达式。然后,我们求解线性BTE,以获得对电子分布的扰动-由主要的散射机制产生-并使用它来计算总体迁移率和塞贝克系数。因此,我们开发了一个从头算模型,该模型用于使用Boltzmann输运(aMoBT)方程计算迁移率和塞贝克系数。使用aMoBT,我们可以在各种温度和载流子浓度范围内准确计算化合物n型半导体GaAs和InN的电输运性质。与在GaAs和InN上进行的实验测量相比,aMoBT具有完全的预测性,并且具有很高的准确性,并且大大优于半经验模型和BTE-cRTA。因此,我们断言这种方法代表了朝着从头算起的载流子传输模型迈出的第一步,该模型在所有化合物半导体中均有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号