首页> 外文期刊>Physical review >Nanometer-scale monitoring of quantum-confined Stark effect and emission efficiency droop in multiple GaN/AlN quantum disks in nanowires
【24h】

Nanometer-scale monitoring of quantum-confined Stark effect and emission efficiency droop in multiple GaN/AlN quantum disks in nanowires

机译:纳米线中多个GaN / AlN量子盘中量子限制的Stark效应和发射效率下降的纳米级监测

获取原文
获取原文并翻译 | 示例
           

摘要

We report on a detailed study of the intensity dependent optical properties of individual GaN/AlN quantum disks (QDisks) embedded into GaN nanowires (NW). The structural and optical properties of the QDisks were probed by high spatial resolution cathodoluminescence (CL) in a scanning transmission electron microscope (STEM). By exciting the QDisks with a nanometric electron beam at currents spanning over three orders of magnitude, strong nonlinearities (energy shifts) in the light emission are observed. In particular, we find that the amount of energy shift depends on the emission rate and on the QDisk morphology (size, position along the NW and shell thickness). For thick QDisks (>4 nm), the QDisk emission energy is observed to blueshift with the increase of the emission intensity. This is interpreted as a consequence of the increase of carriers density excited by the incident electron beam inside the QDisks, which screens the internal electric field and thus reduces the quantum confined Stark effect (QCSE) present in these QDisks. For thinner QDisks (<3 nm), the blueshift is almost absent in agreement with the negligible QCSE at such sizes. For QDisks of intermediate sizes there exists a current threshold above which the energy shifts, marking the transition from unscreened to partially screened QCSE. From the threshold value we estimate the lifetime in the unscreened regime. These observations suggest that, counterintuitively, electrons of high energy can behave ultimately as single electron-hole pair generators. In addition, when we increase the current from 1 to 10 pA the light emission efficiency drops by more than one order of magnitude. This reduction of the emission efficiency is a manifestation of the "efficiency droop" as observed in nitride-based 2D light emitting diodes, a phenomenon tentatively attributed to the Auger effect.
机译:我们报告了对嵌入GaN纳米线(NW)中的单个GaN / AlN量子盘(QDisk)与强度有关的光学特性的详细研究。 QDisks的结构和光学性质是通过在扫描透射电子显微镜(STEM)中的高空间分辨率阴极发光(CL)进行探测的。通过用纳米电子束在超过三个数量级的电流上激发QDisk,可以观察到发光中的强烈非线性(能量漂移)。特别是,我们发现能量移动的量取决于发射速率和QDisk的形态(大小,沿NW的位置和壳的厚度)。对于厚的QDisk(> 4 nm),观察到QDisk的发射能量随发射强度的增加而蓝移。这被解释为由QDisk内部的入射电子束激发的载流子密度增加的结果,该载流子密度屏蔽了内部电场,从而减小了这些QDisk中存在的量子限制斯塔克效应(QCSE)。对于更薄的QDisk(<3 nm),在这种尺寸的QCSE可以忽略不计的情况下,几乎没有蓝移。对于中等大小的QDisk,存在一个电流阈值,能量阈值在该阈值以上移动,标志着从未筛选的QCSE到部分筛选的QCSE的过渡。根据阈值,我们可以估计未筛选方案中的寿命。这些发现表明,与直觉相反,高能电子最终可以充当单个电子-空穴对生成器。此外,当我们将电流从1 pA增加到10 pA时,发光效率会下降一个数量级以上。发射效率的这种降低是在基于氮化物的2D发光二极管中观察到的“效率下降”的一种表现,该现象暂时归因于俄歇效应。

著录项

  • 来源
    《Physical review》 |2016年第20期|205410.1-205410.12|共12页
  • 作者单位

    Instituto de Fisica 'Gleb Wataghin' Universidade Estadual de Campinas - Unicamp, 13083-859, Campinas, Sao Paulo, Brasil;

    Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Universite Paris-Saclay, 91405 Orsay Cedex, France;

    Instituto de Fisica 'Gleb Wataghin' Universidade Estadual de Campinas - Unicamp, 13083-859, Campinas, Sao Paulo, Brasil;

    Institute of Physics, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland;

    Groupe de Physique des Materiaux, UMR CNRS 6634, Universite et INSA de Rouen, Normandie University, 76800 St Etienne du Rouvray, France;

    Institut d'Electronique Fondamentale, University Paris Sud, University Paris Saclay, Orsay 91405, France;

    Institut d'Electronique Fondamentale, University Paris Sud, University Paris Saclay, Orsay 91405, France;

    CEA-CNRS group 'Nanophysique et Semiconducteurs', Institute Neel, Grenoble 38054, France;

    Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom;

    Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom;

    Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom;

    Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom;

    Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Universite Paris-Saclay, 91405 Orsay Cedex, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号