首页> 外文期刊>Physical Review. B, Condensed Matter >Supercurrent-induced spin-orbit torques
【24h】

Supercurrent-induced spin-orbit torques

机译:超电流感应的自旋轨道扭矩

获取原文
获取原文并翻译 | 示例
           

摘要

We theoretically investigate the supercurrent-induced magnetization dynamics of a two-dimensional lattice of ferromagnetically ordered spins placed on a conventional superconductor with broken spatial inversion symmetry and strong spin-orbit coupling. We develop a phenomenological description of the coupled dynamics of the superconducting condensate and the spin system and demonstrate that supercurrents produce a reactive spin-orbit torque on the magnetization. By performing a microscopic self-consistent calculation, we show that the spin-orbit torque originates from a spin polarization of the Cooper pairs due to current-induced spin-triplet correlations. Interestingly, we find that there exists an intrinsic limitation for the maximum achievable spin-orbit torque, which is determined by the coupling strength between the condensate and the spin system. In proximitized hole-doped semiconductors, the maximum achievable spin-orbit torque field is estimated to be on the order of 0.16 mT, which is comparable to the critical field for current-induced magnetization switching in ferromagnetic semiconductors.
机译:我们从理论上研究了放置在常规超导体上的二维铁磁有序自旋的二维晶格的超电流诱导的磁化动力学,该超导体具有空间反对称性和自旋轨道耦合性。我们开发了超导冷凝物和自旋系统耦合动力学的现象学描述,并证明了超电流在磁化强度上产生反应性自旋轨道转矩。通过执行微观自洽计算,我们表明自旋轨道转矩源自电流诱导的自旋三联体相关性导致的库珀对的自旋极化。有趣的是,我们发现最大可达到的自旋轨道转矩存在固有的局限性,这是由冷凝液和自旋系统之间的耦合强度决定的。在近似的掺杂空穴的半导体中,最大可达到的自旋轨道转矩场估计为0.16 mT,与铁磁半导体中电流感应的磁化转换的临界场相当。

著录项

  • 来源
    《Physical Review. B, Condensed Matter》 |2016年第11期|115431.1-115431.7|共7页
  • 作者

    Kjetil M. D. Hals;

  • 作者单位

    Niels Bohr International Academy and the Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号