...
首页> 外文期刊>Journal of magnetism and magnetic materials >Spin-orbit torques from intrinsic spin-orbit couplings in a periodically buckled honeycomb lattice
【24h】

Spin-orbit torques from intrinsic spin-orbit couplings in a periodically buckled honeycomb lattice

机译:来自内在旋转轨道联轴器的旋转轨道扭矩,在定期弯曲的蜂窝晶格中

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this paper, we study the spin-orbit torques (SOTs) originated from the spin-orbit coupling (SOC) of intrinsic type in a periodically buckled honeycomb nanoribbon such as silicene. Using the Green function formalism with density matrix expressions, we analyze the SOT contributions from the Fermi-level and -sea electrons. We find that the intrinsic-SOC-induced inverse spin galvanic effect generates spin accumulations perpendicular to the honeycomb plane. The anti-damping torque results purely from the Fermi-level contribution, while the field-like torque from both the Fermi-level and -sea contributions. At zero bias voltage, the SOT is symmetric with respect to the Fermi energy (i.e., an even function of the Fermi energy), whereas the presence of bias further introduces the anti-symmetric torque components. When the ferromagnet magnetization lies in the honeycomb plane, all Fermi-sea contributions disappear. The maximum SOT among different Fermi energies is also inspected. For large enough in-plane magnetization compared to the staggered potential, the field-like torque has a maximum at zero Fermi energy. When the magnetization is smaller than some value characterized by the intrinsic SOC, the maximum of the anti-damping torque occurs at the cross point of the two Dirac linear bands in the leads. More importantly, we find that the anti-damping torques responsible for magnetic switching as well as the torkance require staggered potential from an applied out-of-plane electric field, i.e., lattice buckling is essential to the switching. When the electric field is reversed, the anti-damping torque and the torkance are also reversed. Accordingly, full electric control of the SOTs can be realized in this buckled system.
机译:在本文中,我们研究了源自旋转轨道耦合(SOT)的旋转轨道扭矩(SOT),其在周期性弯曲的蜂窝纳米型纳米型如硅片中。利用具有密度矩阵表达的绿色功能形式主义,我们分析了来自FERMI级和-SEA电子的SOT贡献。我们发现内在的SoC诱导的逆旋转电流效果产生垂直于蜂窝平面的旋转累积。防阻抗扭矩纯粹从FERMI级贡献产生,而FERMI级和-SEA贡献的田间扭矩。在零偏置电压下,SOT相对于费米能量(即,费米能量的均匀函数)对称,而偏置的存在进一步引入了抗对称扭矩分量。当铁磁磁化强化位于蜂窝平面中时,所有费米海的贡献都消失了。还检查了不同费米能量之间的最大SOT。对于与交错电位相比的大足够大的面内磁化,场状扭矩在零费银能中具有最大值。当磁化小于由本征SOC表征的某个值时,在引线中的两个DIRAC线性带的交叉点处发生抗阻尼扭矩的最大值。更重要的是,我们发现负责磁性开关的防阻尼扭矩以及折磨需要从施加的平面外电场,即晶格屈曲对于切换是必不可少的。当电场反转时,抗阻尼扭矩和折磨也颠倒。因此,可以在该扣系统中实现SOTS的全电控。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号