...
首页> 外文期刊>Physical Review. B, Condensed Matter >Flux qubits in a planar circuit quantum electrodynamics architecture: Quantum control and decoherence
【24h】

Flux qubits in a planar circuit quantum electrodynamics architecture: Quantum control and decoherence

机译:平面电路量子电动力学体系结构中的通量量子位:量子控制和退相干

获取原文
获取原文并翻译 | 示例
           

摘要

We report experiments on superconducting flux qubits in a circuit quantum electrodynamics (cQED) setup. Two qubits, independently biased and controlled, are coupled to a coplanar waveguide resonator. Dispersive qubit state readout reaches a maximum contrast of 72%. We measure energy relaxation times at the symmetry point of 5 and 10 μs, corresponding to 7 and 20 μs when relaxation through the resonator due to Purcell effect is subtracted out, and levels of flux noise of 2.6 and 2.7 μΦ_0/(Hz)~(1/2) at 1 Hz for the two qubits. We discuss the origin of decoherence in the measured devices. The strong coupling between the qubits and the cavity leads to a large, cavity-mediated, qubit-qubit coupling. This coupling, which is characterized spectroscopically, reaches 38 MHz. These results demonstrate the potential of cQED as a platform for fundamental investigations of decoherence and quantum dynamics of flux qubits.
机译:我们报告在电路量子电动力学(cQED)设置中的超导通量量子位的实验。独立偏置和控制的两个量子位耦合到共面波导谐振器。色散量子位状态读数的最大对比度达到72%。我们测量了在5和10μs对称点处的能量驰豫时间,当减去由于赛尔效应引起的通过谐振器的驰豫时,对应于7和20μs,通量噪声为2.6和2.7μΦ_0/(Hz)〜(两个量子位以1 Hz的1/2频率)。我们讨论了被测设备中退相干的起源。量子位与腔之间的强耦合会导致大型的,由腔介导的量子位-量子位耦合。在光谱上表征的这种耦合达到38MHz。这些结果证明了cQED的潜力,可作为基础研究通量量子位的退相干和量子动力学。

著录项

  • 来源
    《Physical Review. B, Condensed Matter》 |2016年第10期|104518.1-104518.5|共5页
  • 作者单位

    Institute for Quantum Computing, Department of Electrical and Computer Engineering, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1;

    Institute for Quantum Computing, Department of Physics and Astronomy, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1;

    Institute for Quantum Computing, Department of Physics and Astronomy, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1;

    Institute for Quantum Computing, Department of Physics and Astronomy, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1,The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, Canada M5S 3G4;

    Institute for Quantum Computing, Department of Electrical and Computer Engineering, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1;

    Institute for Quantum Computing, Department of Physics and Astronomy, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1;

    Institute for Quantum Computing, Department of Physics and Astronomy, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1,Materials Institute, TUB ITAK Marmara Research Center, 41470 Gebze, Kocaeli, Turkey;

    Institute for Quantum Computing, Department of Physics and Astronomy, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1,Institut fuer Experimentalphysik, Universitaet Innsbruck, Technikerstrasse 25/4, 6020 Innsbruck, Austria;

    Institute for Quantum Computing, Department of Physics and Astronomy, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号