首页> 外文期刊>Physical review. B, Condensed Matter And Materals Physics >Quantum phase transitions in effective spin-ladder models for graphene zigzag nanoribbons
【24h】

Quantum phase transitions in effective spin-ladder models for graphene zigzag nanoribbons

机译:石墨烯之字形纳米带的有效自旋阶梯模型中的量子相变

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We examine the magnetic correlations in quantum spin models that were derived recently as effective low-energy theories for electronic correlation effects on the edge states of graphene nanoribbons. For this purpose, we employ quantum Monte Carlo simulations to access the large-distance properties, accounting for quantum fluctuations beyond mean-field-theory approaches to edge magnetism. For certain chiral nanoribbons, antiferromagnetic interedge couplings were previously found to induce a gapped quantum disordered ground state of the effective spin model. We find that the extended nature of the intraedge couplings in the effective spin model for zigzag nanoribbons leads to a quantum phase transition at a large, finite value of the interedge coupling. This quantum critical point separates the quantum disordered region from a gapless phase of stable edge magnetism at weak intraedge coupling, which includes the ground states of spin-ladder models for wide zigzag nanoribbons. To study the quantum critical behavior, the effective spin model can be related to a model of two antiferromagnetically coupled Haldane-Shastry spin-half chains with long-ranged ferromagnetic intrachain couplings. The results for the critical exponents are compared also to several recent renormalization-group calculations for related long-ranged interacting quantum systems.
机译:我们检查了量子自旋模型中的磁相关性,该模型最近作为对石墨烯纳米带边缘状态的电子相关效应的有效低能理论而获得。为此,我们采用量子蒙特卡洛模拟来访问大距离属性,从而解决了超出均场理论方法进行边缘磁场的量子波动。对于某些手性纳米带,先前已发现反铁磁边界耦合可诱导有效自旋模型的缺口量子无序基态。我们发现,在锯齿形纳米带的有效自旋模型中,边缘内耦合的扩展性质导致在边缘耦合的较大有限值处发生量子相变。该量子临界点在弱的边缘内耦合处将量子无序区与稳定边缘磁场的无缝隙相分离,其中包括宽锯齿形纳米带的自旋阶梯模型的基态。为了研究量子临界行为,有效的自旋模型可以与两个具有长距离铁磁链内耦合的反铁磁耦合的Haldane-Shastry自旋半链的模型相关。关键指数的结果也与相关远程相互作用量子系统的几个最近的重新规范化组计算进行了比较。

著录项

  • 来源
    《Physical review. B, Condensed Matter And Materals Physics》 |2017年第16期|165114.1-165114.11|共11页
  • 作者

    Comelie Koop; Stefan Wessel;

  • 作者单位

    Institut fur Theoretische Festkoerperphysik, JARA-FIT and JARA-HPC, RWTH Aachen University, 52056 Aachen, Germany;

    Institut fur Theoretische Festkoerperphysik, JARA-FIT and JARA-HPC, RWTH Aachen University, 52056 Aachen, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号