...
首页> 外文期刊>Physical review. B, Condensed Matter And Materals Physics >Tunable current partition at zero-line intersection of quantum anomalous Hall topologies
【24h】

Tunable current partition at zero-line intersection of quantum anomalous Hall topologies

机译:量子异常霍尔拓扑在零线相交处的可调电流分配

获取原文
获取原文并翻译 | 示例
           

摘要

At the interface between two-dimensional materials with different topologies, topologically protected one-dimensional states (also named zero-line modes) arise. Here, we focus on the quantum anomalous Hall-effect-based zero-line modes formed at the interface between regimes with different Chern numbers. We find that these zero-line modes are chiral and unilaterally conductive due to the breaking of time-reversal invariance. For a beam splitter consisting of two intersecting zero lines, the chirality ensures that a current can only be injected from two of the four terminals. Our numerical results further show that, in the absence of contact resistance, the (anti-)clockwise partitions of the currents from these two terminals are the same owing to the current conservation, which effectively simplifies the partition laws. We find that the partition is robust against the relative shift of Fermi energy but can be adjusted effectively by tuning the relative magnetization strengths at different regimes or relative angles between zero lines.
机译:在具有不同拓扑的二维材料之间的界面处,出现了受拓扑保护的一维状态(也称为零线模式)。在这里,我们集中于在具有不同Chern数的体系之间的界面处形成的基于量子异常基于霍尔效应的零线模式。我们发现,由于时间反转不变性的破坏,这些零线模式是手性的并且是单边导电的。对于由两条相交的零线组成的分束器,手征性确保只能从四个端子中的两个端子注入电流。我们的数值结果进一步表明,在没有接触电阻的情况下,由于电流守恒,来自这两个端子的电流的(逆时针)分配是相同的,这有效地简化了分配定律。我们发现隔板对费米能量的相对移动具有鲁棒性,但可以通过调整不同状态下的相对磁化强度或零线之间的相对角度来有效地进行调整。

著录项

  • 来源
    《Physical review. B, Condensed Matter And Materals Physics》 |2017年第15期|155445.1-155445.6|共6页
  • 作者单位

    Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Energy, Shenzhen University, Shenzhen 518060, China,ICQD, Hefei National Laboratory for Physical Sciences at Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China,CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China;

    ICQD, Hefei National Laboratory for Physical Sciences at Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China,CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China;

    ICQD, Hefei National Laboratory for Physical Sciences at Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China,CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China;

    Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Energy, Shenzhen University, Shenzhen 518060, China;

    ICQD, Hefei National Laboratory for Physical Sciences at Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China,CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号