首页> 外文期刊>Physical review. B, Condensed Matter And Materals Physics >Molecular dynamics studies of ion beam implantation and patterning of silicon: Effect of noble gas cluster formation
【24h】

Molecular dynamics studies of ion beam implantation and patterning of silicon: Effect of noble gas cluster formation

机译:硅离子束注入和构图的分子动力学研究:稀有气体团簇形成的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The use of energetic ion beams to induce nanopattern formation at surfaces has been well studied both experimentally and theoretically. However, the influence on morphological evolution of the implanted species themselves remains little understood, particularly in the case when the incident ion species does not interact chemically with the target material. In this work. MD simulation results are presented for cumulative ion bombardment of Si to a fluence of 3 × 10~(15) cm~(-2) or more for a range of incident ion energies (20-1000 eV). angles (0-85 ). and species (Ne. Ar, Kr, Xe). For most cases, the implanted ions are observed to form gas clusters or bubbles beneath the surface as the fluence increases. The implantation and cluster formation decrease in magnitude with increasing ion incidence angle, and remain fairly similar for the heavier-than-Si species (Ar. Kr. and Xe). However, the implantation and cluster formation are much more prominent for Ne irradiation. As the fluence continues to increase beyond ~10~(15) cm~(-2). the gas clusters begin to become exposed to the vacuum as the Si layers trapping the gas atoms are eroded by the incident ions. The exposed gas clusters then degas very rapidly, leading to disruption at the surface and to viscous material flow of Si into the void left behind. Comparison to dynamic binary collision approximation (BCA) simulations indicates that cluster formation and degassing contributes to a wide distribution of single-impact emission yields of implanted ions, contrary to intuitive expectations based on BCA simulations. Notably, the increased size and frequency of many-atom implanted ion emission events contributes to a much lower concentration of the implanted species than is otherwise expected from BCA simulations. Additionally, this cluster degassing phenomenon is conjectured to provide a potential "antipatterning" mechanism by disrupting or destroying nanopattern "seeds" at the surface. This could provide an additional mechanism to improve model predictions of critical angles for patterning transitions, and may also provide at least a partial explanation for the difficulty of obtaining patterns on Ne-bombarded Si surfaces.
机译:在实验和理论上都对使用高能离子束诱导表面形成纳米图案进行了深入研究。但是,对注入物质本身的形态演变的影响仍然知之甚少,特别是在入射离子物质不与目标物质发生化学相互作用的情况下。在这项工作中。给出了MD模拟结果,表明在一定范围的入射离子能量(20-1000 eV)下,Si的累积离子轰击达到3×10〜(15)cm〜(-2)或更高的注量。角度(0-85)。和物种(Ne。Ar,Kr,Xe)。在大多数情况下,随着注量的增加,观察到注入离子在表面下形成气体团簇或气泡。注入和簇的形成随着离子入射角的增加而减小,并且对于重于Si的物种(Ar。Kr。和Xe)仍然相当相似。然而,对于Ne辐照而言,注入和簇形成更为突出。随着注量的持续增加,超过〜10〜(15)cm〜(-2)。随着捕获气体原子的Si层被入射离子侵蚀,气体团簇开始暴露于真空中。然后,暴露的气体团簇非常快速地脱气,从而导致表面破裂,并使Si的粘性材料流进留在后面的空隙中。与动态二进制碰撞近似(BCA)模拟的比较表明,团簇的形成和除气有助于植入离子的单次碰撞发射量的广泛分布,这与基于BCA模拟的直观预期相反。值得注意的是,许多原子植入的离子发射事件的大小和频率增加,导致植入物种的浓度大大低于BCA模拟所预期的浓度。另外,推测该团簇脱气现象通过破坏或破坏表面的纳米图案“种子”而提供了潜在的“前驱”机制。这可以提供额外的机制来改善用于构图转变的临界角的模型预测,并且还可以至少部分地解释在Ne轰击Si表面上获得图案的困难。

著录项

  • 来源
    《Physical review. B, Condensed Matter And Materals Physics》 |2018年第23期|235443.1-235443.13|共13页
  • 作者单位

    Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA,Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA;

    Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA;

    Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA,Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign. Urbana, Illinois 61802, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号