...
首页> 外文期刊>Physical review. B, Condensed Matter And Materals Physics >Optical study of Dirac fermions and related phonon anomalies in the antiferromagnetic compound CaFeAsF
【24h】

Optical study of Dirac fermions and related phonon anomalies in the antiferromagnetic compound CaFeAsF

机译:反铁磁化合物CaFeAsF中狄拉克费米子及其相关声子异常的光学研究

获取原文
获取原文并翻译 | 示例

摘要

We performed optical studies on CaFeAsF single crystals, a parent compound of the 1111 -type iron-based superconductors that undergoes a structural phase transition from tetragonal to orthorhombic at T_s= 121 K and a magnetic one to a spin density wave (SDW| state at T_N = 110 K. In the low-temperature optical conductivity spectrum, after the subtraction of a narrow Drude peak, we observe a pronounced singularity around 300 cm~(-1) that separates two regions of quasilinear conductivity. We outline that these characteristic absorption features are signatures of Dirac fermions. similar to what was previously reported for the BaFe_2As_2 system [Z.-G. Chen et al., Phys. Rev. Lett. 119, 096401 (2017)]. In support of this interpretation, we show that for the latter system this singular feature disappears rapidly upon electron and hole doping, as expected if it arises from a van Hove singularity in between two Dirac cones. Finally, we show that one of the infrared-active phonon modes (the Fe-As mode at 250 cm~(-1)) develops a strongly asymmetric line shape in the SDW state and note that this behavior can be explained in terms of a strong coupling with the Dirac fermions.
机译:我们对CaFeAsF单晶进行了光学研究,CaFeAsF单晶是1111型铁基超导体的母体化合物,在T_s = 121 K时从四方晶系向正交晶态发生结构相变,并从磁性体转变为自旋密度波(在T_N = 110 K.在低温光导谱中,减去窄的Drude峰后,在300 cm〜(-1)附近观察到明显的奇异点,将奇线性电导率的两个区域分开,我们概述了这些特征吸收这些特征是狄拉克费米子的特征,类似于先前报道的BaFe_2As_2系统[Z.-G. Chen等人,Phys。Rev. Lett。119,096401(2017)]。对于后一种系统,该奇异特征会在电子和空穴掺杂后迅速消失,这是预期的,如果它是由两个狄拉克锥之间的van Hove奇异性引起的。最后,我们证明了一种红外活性声子模式(Fe-由于在250 cm〜(-1)处的模在SDW状态下会形成强烈的不对称线形,因此请注意,这种行为可以用与狄拉克费米子的强耦合来解释。

著录项

  • 来源
    《Physical review. B, Condensed Matter And Materals Physics》 |2018年第19期|195110.1-195110.6|共6页
  • 作者单位

    Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China,University of Fribourg, Department of Physics and Fribourg Center for Nanomaterials, Chemin du Musee 3, CH-1700 Fribourg, Switzerland;

    Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China;

    Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China;

    State Key laboratory of Functional Materials for Informatics and Shanghai Center for Superconductivity, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;

    State Key laboratory of Functional Materials for Informatics and Shanghai Center for Superconductivity, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;

    University of Fribourg, Department of Physics and Fribourg Center for Nanomaterials, Chemin du Musee 3, CH-1700 Fribourg, Switzerland;

    University of Fribourg, Department of Physics and Fribourg Center for Nanomaterials, Chemin du Musee 3, CH-1700 Fribourg, Switzerland;

    University of Fribourg, Department of Physics and Fribourg Center for Nanomaterials, Chemin du Musee 3, CH-1700 Fribourg, Switzerland;

    Cenler for Superconducting Physics and Materials, National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China;

    LPEM, ESPCI Paris, PSL University, CNRS, F-75231 Paris Cedex 5, France,Sorbonne Universite, CNRS, LPEM, F-75005 Paris Cedex 5, France;

    University of Fribourg, Department of Physics and Fribourg Center for Nanomaterials, Chemin du Musee 3, CH-1700 Fribourg, Switzerland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号