首页> 外文期刊>Physical review. B, Condensed Matter And Materals Physics >Functional renormalization group approach to SU(N) Heisenberg models: Momentum-space renormalization group for the large-N limit
【24h】

Functional renormalization group approach to SU(N) Heisenberg models: Momentum-space renormalization group for the large-N limit

机译:SU(N)Heisenberg模型的功能重整化组方法:大N极限的动量空间重整化组

获取原文
获取原文并翻译 | 示例
       

摘要

In frustrated magnetism, making a stringent connection between microscopic spin models and macroscopic properties of spin liquids remains an important challenge. A recent step towards this goal has been the development of the pseudofermion functional renormalization group approach (pf-FRG) which, building on a fermionic parton construction, enables the numerical detection of the onset of spin liquid states as temperature is lowered. In this work, focusing on the SU(N) Heisenberg model at large N, we extend this approach in a way that allows us to directly enter the low-temperature spin liquid phase, and to probe its character. Our approach proceeds in momentum space, making it possible to keep the truncation minimalistic, while also avoiding the bias introduced by an explicit decoupling of the fermionic parton interactions into a given channel. We benchmark our findings against exact mean-field results in the large-N limit, and show that even without prior knowledge the pf-FRG approach identifies the correct mean-field decoupling channel. On a technical level, we introduce an alternative finite temperature regularization scheme that is necessitated to access the spin liquid ordered phase. In a companion paper [Buessen et al., Phys. Rev. B 97, 064415 (2018)] we present a different set of modifications of the pf-FRG scheme that allow us to study SU(N) Heisenberg models (using a real-space RG approach) for arbitrary values of N, albeit only up to the phase transition towards spin liquid physics.
机译:在沮丧的磁性中,在微观自旋模型和自旋液体的宏观特性之间建立严格的联系仍然是一个重要的挑战。朝此目标迈出的最新一步是伪费米子功能重整化组方法(pf-FRG)的开发,该方法建立在费米离子parton结构的基础上,能够随着温度降低而对自旋液相的发生进行数值检测。在这项工作中,我们着眼于大N下的SU(N)Heisenberg模型,以一种允许我们直接进入低温自旋液相并探究其特性的方式扩展了这种方法。我们的方法在动量空间中进行,从而可以使截断保持最小化,同时还避免了由费米离子的部分相互作用与给定通道的显式去耦所引入的偏差。我们将研究结果与大N范围内的精确平均场结果进行基准比较,结果表明,即使没有先验知识,pf-FRG方法仍可识别正确的平均场去耦通道。在技​​术层面上,我们介绍了一种替代的有限温度正则化方案,该方案必须访问旋转液体有序相。在同伴论文中[Buessen等,Phys。 Rev. B 97,064415(2018)]我们提出了pf-FRG方案的另一组修改,使我们能够研究SU(N)Heisenberg模型(使用实空间RG方法)以获取任意N值,尽管直到达到自旋液体物理学的相变为止。

著录项

  • 来源
    《Physical review. B, Condensed Matter And Materals Physics》 |2018年第6期|064416.1-064416.12|共12页
  • 作者单位

    Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany,Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6;

    Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany;

    Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany;

    Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany;

    Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:17:00

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号