首页> 外文学位 >Phase-fields and the renormalization group: A continuum approach to multiscale modeling of materials.
【24h】

Phase-fields and the renormalization group: A continuum approach to multiscale modeling of materials.

机译:相场和重归一化组:材料多尺度建模的连续方法。

获取原文
获取原文并翻译 | 示例

摘要

Important phenomena in materials processing, such as dendritic growth during solidification, involve a wide range of length scales from the atomic level up to product dimensions. The phase-field approach, enhanced by optimal asymptotic methods and adaptive mesh refinement, copes with a part of this range of scales, from few tens of microns to millimeters, and provides an effective continuum modeling technique for moving boundary problems. A serious limitation of the usual representation of the phase-field model however, is that it fails to keep track of the underlying crystallographic anisotropy, and thus is unable to capture lattice defects and model polycrystalline microstructure without non-trivial modifications. The phase-field crystal (PFC) model on the other hand, is a phase field equation with periodic solutions that represent the atomic density. It natively incorporates elasticity, and can model formation of polycrystalline films, dislocation motion and plasticity, and nonequilibrium dynamics of phase transitions in real materials. Because it describes matter at the atomic length scale however, it is unsuitable for coping with the range of length scales in problems of serious interest. This thesis takes a first step towards developing a unified multiscale approach spanning all relevant lengths, from the nanoscale up, by combining elements from the phase-field and phase-field crystal modeling approaches, perturbative renormalization group theory, and adaptive mesh refinement.; A chapter of this thesis also examines the effect of confinement on dendritic growth, during equiaxed solidification in a pure material and the directional solidification of a dilute binary alloy, using phase-field models.
机译:材料加工中的重要现象,例如凝固过程中的树枝状生长,涉及从原子级到产品尺寸的各种长度尺度。通过最佳渐近方法和自适应网格细化增强的相场方法可以应对几十微米至毫米范围内的比例尺范围的一部分,并为移动边界问题提供了有效的连续体建模技术。然而,相场模型通常表示的一个严重局限性在于,它无法跟踪基本的晶体学各向异性,因此,如果不进行不重要的修改,就无法捕获晶格缺陷并模拟多晶微观结构。另一方面,相场晶体(PFC)模型是一个具有表示原子密度的周期解的相场方程。它本身具有弹性,可以模拟多晶膜的形成,位错运动和可塑性以及真实材料中相变的非平衡动力学。然而,由于它以原子长度尺度描述物质,因此不适用于严重关注问题的长度尺度范围。本文通过将相场和相场晶体建模方法的要素,摄动重归一化群论和自适应网格细化相结合,迈出了从纳米尺度到跨越所有相关长度的统一多尺度方法的第一步。本文的一章还使用相场模型研究了在纯材料的等轴凝固过程中和稀二元合金的定向凝固过程中,约束对树枝状晶体生长的影响。

著录项

  • 作者

    Athreya, Badrinarayan.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Mechanical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;工程材料学;
  • 关键词

  • 入库时间 2022-08-17 11:40:57

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号