...
首页> 外文期刊>Physical review >Charge and spin control of ultrafast electron and hole dynamics in single CdSe/ZnSe quantum dots
【24h】

Charge and spin control of ultrafast electron and hole dynamics in single CdSe/ZnSe quantum dots

机译:CdSe / ZnSe单个量子点中超快电子和空穴动力学的电荷和自旋控制

获取原文
获取原文并翻译 | 示例
           

摘要

We study the dynamics of photoexcited electrons and holes in single negatively charged CdSe/ZnSe quantum dots with two-color femtosecond pump-probe spectroscopy. An initial characterization of the energy level structure is performed at low temperatures and magnetic fields of up to 5 T. Emission and absorption resonances are assigned to specific transitions between few-fermion states by a theoretical model based on a configuration interaction approach. To analyze the dynamics of individual charge carriers, we initialize the quantum system into excited trion states with defined energy and spin. Subsequently, the time-dependent occupation of the trion ground state is monitored by spectrally resolved differential transmission measurements. We observe subpicosecond dynamics for a hole excited to the D shell. The energy dependence of this D-to-S shell intraband transition is investigated in quantum dots of varying size. Excitation of an electron-hole pair in the respective p shells leads to the formation of singlet and triplet spin configurations. Relaxation of the p-shell singlet is observed to occur on a time scale of a few picoseconds. Pumping of p-shell triplet transitions opens up two pathways with distinctly different scattering times. These processes are shown to be governed by the mixing of singlet and triplet states due to exchange interactions enabling simultaneous electron and hole spin flips. To isolate the relaxation channels, we align the spin of the residual electron by a magnetic field and employ laser pulses of defined helicity. This step provides ultrafast preparation of a fully inverted trion ground state of the quantum dot with near unity probability, enabling deterministic addition of a single photon to the probe pulse. Therefore our experiments represent a significant step towards using single quantum emitters with well-controled inversion to manipulate the photon statistics of ultrafast light pulses.
机译:我们用双色飞秒泵浦探针光谱研究了单个带负电的CdSe / ZnSe量子点中光激发电子和空穴的动力学。能级结构的初始表征是在低温和高达5 T的磁场下进行的。通过基于配置相互作用方法的理论模型,发射和吸收共振被分配给少数费米态之间的特定跃迁。为了分析单个电荷载流子的动力学,我们将量子系统初始化为具有定义的能量和自旋的激发三态。随后,通过光谱解析的差分透射测量来监测tri离子基态随时间的变化。我们观察到D壳激发的孔的皮秒级动力学。在不同大小的量子点中研究了这种D到S壳内跃迁的能量依赖性。各个p壳中的电子-空穴对的激发导致单重态和三重态自旋构型的形成。观察到p壳单线态的弛豫发生在几皮秒的时间尺度上。 p壳三重态跃迁的泵浦打开了两条具有明显不同的散射时间的路径。由于交换相互作用使得同时发生电子和空穴自旋翻转,这些过程显示出受单重态和三重态混合的支配。为了隔离弛豫通道,我们通过磁场对齐剩余电子的自旋,并使用定义螺旋度的激光脉冲。该步骤以接近统一的可能性超快地准备了量子点的完全倒置的三重子基态,从而可以将单个光子确定性地添加到探测脉冲中。因此,我们的实验代表了朝着使用具有良好控制反转的单量子发射器来操纵超快光脉冲的光子统计迈出的重要一步。

著录项

  • 来源
    《Physical review》 |2018年第4期|045302.1-045302.14|共14页
  • 作者单位

    Department of Physics and Center for Applied Photonics, University of Konstanz, D-78464 Konstanz, Germany;

    Department of Physics and Center for Applied Photonics, University of Konstanz, D-78464 Konstanz, Germany;

    Department of Physics and Center for Applied Photonics, University of Konstanz, D-78464 Konstanz, Germany;

    Institut fuer Festkoerpertheorie, Universitat Munster, Wilhelm-Klemm-Straβe 10, D-48149 Muenster, Germany;

    Department of Physics and Center for Applied Photonics, University of Konstanz, D-78464 Konstanz, Germany;

    Department of Physics and Center for Applied Photonics, University of Konstanz, D-78464 Konstanz, Germany;

    Institute of Physics, EP 3, University of Wiirzburg, D-97074 Wurzburg, Germany;

    Institute of Physics, EP 3, University of Wiirzburg, D-97074 Wurzburg, Germany;

    Institute of Physics, EP 3, University of Wiirzburg, D-97074 Wurzburg, Germany;

    Institut fuer Festkoerpertheorie, Universitat Munster, Wilhelm-Klemm-Straβe 10, D-48149 Muenster, Germany;

    Institut fuer Festkoerpertheorie, Universitat Munster, Wilhelm-Klemm-Straβe 10, D-48149 Muenster, Germany;

    Department of Physics and Center for Applied Photonics, University of Konstanz, D-78464 Konstanz, Germany,Department of Engineering Physics, Ecole Polytechnique de Montreal, Montreal, Quebec H3T IJ4, Canada;

    Department of Physics and Center for Applied Photonics, University of Konstanz, D-78464 Konstanz, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号