...
首页> 外文期刊>Physical review letters >Spectroscopic Imaging of Quasiparticle Bound States Induced by Strong Nonmagnetic Scatterings in One-Unit-Cell FeSe/SrTiO_3
【24h】

Spectroscopic Imaging of Quasiparticle Bound States Induced by Strong Nonmagnetic Scatterings in One-Unit-Cell FeSe/SrTiO_3

机译:单细胞FeSe / SrTiO_3中强非磁性散射引起的准粒子束缚态的光谱成像。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The absence of holelike Fermi pockets in the heavily electron-doped iron selenides (HEDISs) challenges the s(+/-)-wave pairing originally proposed for iron pnictides, which consists of opposite signs of the gap function on electron and hole pockets. While the HEDIS compounds have been investigated extensively, a consistent description of the superconducting pairing therein is still lacking. Here, by in situ scanning tunneling spectroscopy and theoretical calculations, we study the effects of strong scatterings from nonmagnetic Pb adatoms on the epitaxially grown HEDIS, one-unit-cell FeSe/SrTiO3(001). Systematic tunneling spectra measured on the Pb adatoms show comprehensive signals of quasiparticle bound states, which can be well explained theoretically within the sign-reversing pairing scenarios. The finding implies that, in addition to previously detected phonons, spin fluctuations play an important role in driving the Cooper pairing in FeSe/SrTiO3(001). The sign reversal in the gap function we revealed here is a significant ingredient in a unified understanding of the high-temperature superconductivity in HEDISs.
机译:重电子掺杂的硒化铁(HEDISs)中不存在像空穴一样的费米腔,这对最初建议用于铁离子的s(+/-)波配对提出了挑战,该配对由电子和空穴腔的间隙功能的相反符号组成。尽管已对HEDIS化合物进行了广泛研究,但仍缺乏对其中超导对的一致描述。在这里,通过原位扫描隧道光谱法和理论计算,我们研究了非磁性Pb原子的强散射对外延生长的HEDIS(单单元FeSe / SrTiO3(001))的影响。在Pb原子上测得的系统隧穿光谱显示了准粒子束缚态的综合信号,在正负反转配对方案中,理论上可以很好地解释。该发现暗示,除了先前检测到的声子以外,自旋涨落在驱动FeSe / SrTiO3(001)中的库珀配对中也起着重要作用。我们在这里揭示的间隙函数中的符号反转是对HEDIS中高温超导性的统一理解的重要组成部分。

著录项

  • 来源
    《Physical review letters》 |2019年第3期|036801.1-036801.6|共6页
  • 作者单位

    Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China;

    Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China;

    Nanjing Normal Univ, Sch Phys & Technol, Jiangsu Key Lab Optoelect Technol, Ctr Quantum Transport & Thermal Energy Sci, Nanjing 210023, Jiangsu, Peoples R China;

    Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China;

    Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China;

    Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China|Nanjing Univ, Sch Phys, Nanjing 210093, Jiangsu, Peoples R China|Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China;

    Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China|Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China|Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China|Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号