...
首页> 外文期刊>Physical review letters >Ultrafast Dynamics of Massive Dirac Fermions in Bilayer Graphene
【24h】

Ultrafast Dynamics of Massive Dirac Fermions in Bilayer Graphene

机译:双层石墨烯中大量狄拉克费米子的超快动力学

获取原文
获取原文并翻译 | 示例

摘要

Bilayer graphene is a highly promising material for electronic and optoelectronic applications since it is supporting massive Dirac fermions with a tunable band gap. However, no consistent picture of the gap's effect on the optical and transport behavior has emerged so far, and it has been proposed that the insulating nature of the gap could be compromised by unavoidable structural defects, by topological in-gap states, or that the electronic structure could be altogether changed by many-body effects. Here, we directly follow the excited carriers in bilayer graphene on a femtosecond time scale, using ultrafast time- and angle-resolved photoemission. We find a behavior consistent with a single-particle band gap. Compared to monolayer graphene, the existence of this band gap leads to an increased carrier lifetime in the minimum of the lowest conduction band. This is in sharp contrast to the second substate of the conduction band, in which the excited electrons decay through fast, phonon-assisted interband transitions.
机译:双层石墨烯是用于电子和光电应用的极有前途的材料,因为它以可调的带隙支持大量的狄拉克费米子。但是,到目前为止,还没有关于间隙对光学和传输行为的影响的一致描述,并且有人提出,不可避免的结构缺陷,拓扑间隙状态或电子结构可能会被多体效应完全改变。在这里,我们使用超快的时间和角度分辨光发射,在飞秒级的时间范围内直接跟踪双层石墨烯中的激发载流子。我们发现与单粒子带隙一致的行为。与单层石墨烯相比,该带隙的存在导致在最低导带的最小值下增加的载流子寿命。这与导带的第二子状态形成鲜明对比,在导带的第二子状态中,受激电子通过声子辅助的快速带间跃迁而衰减。

著录项

  • 来源
    《Physical review letters 》 |2014年第25期| 257401.1-257401.5| 共5页
  • 作者单位

    Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark;

    Institute of Condensed Matter Physics, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne, Switzerland;

    Sincrotrone Trieste, 34149 Trieste, Italy;

    Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark;

    Sincrotrone Trieste, 34149 Trieste, Italy;

    IOM-CNR Laboratorio TASC, Area Science Park, 34012 Trieste, Italy;

    Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom;

    Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom;

    Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom;

    Institut fuer Physik, Technische Universitaet Chemnitz, 09126 Chemnitz, Germany;

    Institut fuer Physik, Technische Universitaet Chemnitz, 09126 Chemnitz, Germany;

    Institut fuer Physik, Technische Universitaet Chemnitz, 09126 Chemnitz, Germany;

    Institut fuer Physik, Technische Universitaet Chemnitz, 09126 Chemnitz, Germany;

    Sincrotrone Trieste, 34149 Trieste, Italy,Department of Physics, University of Trieste, 34127 Trieste, Italy;

    Institute of Condensed Matter Physics, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne, Switzerland;

    SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews, Fife KY16 9SS, United Kingdom;

    Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    photoemission and photoelectron spectra;

    机译:光发射和光电子能谱;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号