...
首页> 外文期刊>Nature Materials >Coexisting massive and massless Dirac fermions in symmetry-broken bilayer graphene
【24h】

Coexisting massive and massless Dirac fermions in symmetry-broken bilayer graphene

机译:对称破碎的双层石墨烯中共存的大量和无质量的狄拉克费米子

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Charge carriers in bilayer graphene are widely believed to be massive Dirac fermions that have a bandgap tunable by a transverse electric field. However, a full transport gap, despite its importance for device applications, has not been clearly observed in gated bilayer graphene, a longstanding puzzle. Moreover, the low-energy electronic structure of bilayer graphene is widely held to be unstable towards symmetry breaking either by structural distortions, such as twist, strain, or electronic interactions that can lead to various ground states. Which effect dominates the physics at low energies is hotly debated. Here we show both by direct band-structure measurements and by calculations that a native imperfection of bilayer graphene, a distribution of twists whose size is as small as ~0.1°, is sufficient to generate a completely new electronic spectrum consisting of massive and massless Dirac fermions. The massless spectrum is robust against strong electric fields, and has a unusual topology in momentum space consisting of closed arcs having an exotic chiral pseudospin texture, which can be tuned by varying the charge density. The discovery of this unusual Dirac spectrum not only complements the framework of massive Dirac fermions, widely relevant to charge transport in bilayer graphene, but also supports the possibility of valley Hall transport.
机译:双层石墨烯中的电荷载流子被普遍认为是块状狄拉克费米子,其带隙可通过横向电场调节。然而,尽管长期存在的难题,但在门控双层石墨烯中并未清楚地看到完整的传输间隙,尽管它对器件应用很重要。此外,双层石墨烯的低能电子结构被广泛认为对对称性破坏是不稳定的,无论是由于结构扭曲,例如扭曲,应变,还是可能导致各种基态的电子相互作用。在低能量条件下,哪种效应占主导地位的物理学引起了激烈的争论。在这里,我们通过直接的能带结构测量和通过计算表明,双层石墨烯的固有缺陷,扭曲分布(其尺寸小至〜0.1°)足以产生由大量和无质量的狄拉克组成的全新电子光谱费米子。无质量质谱对强电场具有鲁棒性,并且在动量空间中具有不寻常的拓扑结构,该拓扑结构由具有奇异手性伪自旋纹理的闭合弧组成,可以通过改变电荷密度来对其进行调整。这一异常狄拉克光谱的发现不仅补充了大规模狄拉克费米子的构架,广泛与双层石墨烯中的电荷传输有关,而且还支持了谷底霍尔传输的可能性。

著录项

  • 来源
    《Nature Materials》 |2013年第10期|887-892|共6页
  • 作者单位

    Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA,Department of Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany;

    Donostia International Physics Centre, Manuel Lardizabal 4, E-20018 San Sebastian, Spain;

    Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;

    Institut fuer Physik, Technische Universitaet Chemnitz, Reichenhainer Str. 70, 09126 Chemnitz, Germany;

    Department of Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany;

    Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;

    Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号