首页> 外文期刊>Physical review letters >Exploration of the Transition from the Hydrodynamiclike to the Strongly Kinetic Regime in Shock-Driven Implosions
【24h】

Exploration of the Transition from the Hydrodynamiclike to the Strongly Kinetic Regime in Shock-Driven Implosions

机译:在冲击驱动内爆中从流体动力学到强动力学状态的转变的探索

获取原文
获取原文并翻译 | 示例
           

摘要

Clear evidence of the transition from hydrodynamiclike to strongly kinetic shock-driven implosions is, for the first time, revealed and quantitatively assessed. Implosions with a range of initial equimolar D~3He gas densities show that as the density is decreased, hydrodynamic simulations strongly diverge from and increasingly overpredict the observed nuclear yields, from a factor of ~2 at 3.1 mg/cm~3 to a factor of 100 at 0.14 mg/cm~3. (The corresponding Knudsen number, the ratio of ion mean-free path to minimum shell radius, varied from 0.3 to 9; similarly, the ratio of fusion burn duration to ion diffusion time, another figure of merit of kinetic effects, varied from 0.3 to 14.) This result is shown to be unrelated to the effects of hydrodynamic mix. As a first step to garner insight into this transition, a reduced ion kinetic (RIK) model that includes gradient-diffusion and loss-term approximations to several transport processes was implemented within the framework of a one-dimensional radiation-transport code. After empirical calibration, the RIK simulations reproduce the observed yield trends, largely as a result of ion diffusion and the depletion of the reacting tail ions.
机译:首次揭示并定量评估了从类流体动力学到强烈动力学冲击驱动内爆的过渡。一系列初始等摩尔D〜3He气体密度的内爆表明,随着密度的减小,流体动力学模拟与观测到的核产率有很大的差异,并且越来越高地预测了核产率,从3.1 mg / cm〜3的系数约为2到100在0.14 mg / cm〜3下。 (相应的Knudsen数,离子平均自由程与最小壳半径之比在0.3到9之间;类似地,聚变燃烧持续时间与离子扩散时间的比值(另一个动力学效应的优值)在0.3到9之间变化。 14.)该结果表明与流体动力混合的影响无关。作为深入了解这一转变的第一步,在一维辐射传输代码的框架内实现了包括梯度扩散和损失项对多个传输过程的近似在内的还原离子动力学(RIK)模型。经过经验性校准后,RIK模拟重现了观察到的产率趋势,这主要是由于离子扩散和反应性尾离子的耗尽所致。

著录项

  • 来源
    《Physical review letters》 |2014年第18期|185001.1-185001.6|共6页
  • 作者单位

    Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA;

    Lawrence Livermore National Laboratory, Livermore, California 94550, USA;

    Dipartimento SBAI, Universita di Roma 'La Sapienza', Via A Scarpa, 14-16, I-00161 Roma, Italy;

    Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA;

    Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA;

    Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA;

    Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA;

    Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA;

    Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA;

    Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA;

    Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA;

    Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA;

    Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA;

    Lawrence Livermore National Laboratory, Livermore, California 94550, USA;

    Lawrence Livermore National Laboratory, Livermore, California 94550, USA;

    Lawrence Livermore National Laboratory, Livermore, California 94550, USA;

    Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA;

    Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA;

    General Atomics, San Diego, California 92186, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    laser inertial confinement; hydrodynamic models; shock waves and discontinuities;

    机译:激光惯性约束流体动力学模型;冲击波和间断;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号