...
首页> 外文期刊>PHYSICAL REVIEW E >Indentation quantification for in-liquid nanomechanical measurement of soft material using an atomic force microscope: Rate-dependent elastic modulus of live cells
【24h】

Indentation quantification for in-liquid nanomechanical measurement of soft material using an atomic force microscope: Rate-dependent elastic modulus of live cells

机译:使用原子力显微镜对软材料进行液体纳米机械测量的压痕量化:活细胞的速率依赖性弹性模量

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, a control-based approach to replace the conventional method to achieve accurate indentationnquantification is proposed for nanomechanical measurement of live cells using atomic force microscope. Accuratenindentation quantification is central to probe-based nanomechanical property measurement. The conventionalnmethod for in-liquid nanomechanical measurement of live cells, however, fails to accurately quantify thenindentation as effects of the relative probe acceleration and the hydrodynamic force are not addressed. As anresult, significant errors and uncertainties are induced in the nanomechanical properties measured. In this paper,na control-based approach is proposed to account for these adverse effects by tracking the same excitation forcenprofile on both a live cell and a hard reference sample through the use of an advanced control technique, and bynquantifying the indentation from the difference of the cantilever base displacement in these two measurements.nThe proposed control-based approach not only eliminates the relative probe acceleration effect with no neednto calibrate the parameters involved, but it also reduces the hydrodynamic force effect significantly when thenforce load rate becomes high. We further hypothesize that, by using the proposed control-based approach, thenrate-dependent elastic modulus of live human epithelial cells under different stress conditions can be reliablynquantified to predict the elasticity evolution of cellmembranes, and hence can be used to predict cellular behaviors.nBy implementing the proposed approach, the elastic modulus of HeLa cells before and after the stress processnwere quantified as the force load rate was changed over three orders of magnitude from 0.1 to 100 Hz, where thenamplitude of the applied force and the indentation were at 0.4–2 nN and 250–450 nm, respectively. The measurednelastic modulus of HeLa cells showed a clear power-law dependence on the load rate, both before and after thenstress process. Moreover, the elastic modulus of HeLa cells was substantially reduced by two to five times due tonthe stress process. Thus, our measurements demonstrate that the control-based protocol is effective in quantifyingnand characterizing the evolution of nanomechanical properties during the stress process of live cells.
机译:本文提出了一种基于控制的方法来代替传统方法来实现精确的压痕量化,用于使用原子力显微镜对活细胞进行纳米机械测量。精密压痕量化对于基于探针的纳米力学性能测量至关重要。然而,用于活细胞的液体内纳米力学测量的常规方法无法准确地量化压痕,因为未解决相对探针加速度和流体动力的影响。结果,在所测量的纳米机械性能中引起了明显的误差和不确定性。在本文中,提出了一种基于控制的方法来解决这些不利影响,方法是使用先进的控制技术在活细胞和硬参考样品上跟踪相同的激发力分布,并根据压痕的差异来量化压痕。提出的基于控制的方法不仅消除了探头相对加速度的影响,而且无需校准所涉及的参数,而且当力负载率变高时,也显着降低了流体动力作用。我们进一步假设,通过使用所提出的基于控制的方法,可以可靠地量化活体上皮细胞在不同应力条件下依赖于速率的弹性模量,以预测细胞膜的弹性演变,从而可以用于预测细胞行为。实施建议的方法时,随着力负载率从0.1到100 Hz的三个数量级的变化,应力过程前后的HeLa细胞的弹性模量被量化,其中作用力和压痕的振幅为0.4–2 nN和250–450 nm。在应力过程之前和之后,测得的HeLa电池的弹性模量均显示出明显的幂律对负载率的依赖性。此外,由于应力作用,HeLa细胞的弹性模量大大降低了2至5倍。因此,我们的测量结果表明,基于控制的协议可有效量化和表征活细胞应激过程中纳米力学性能的演变。

著录项

  • 来源
    《PHYSICAL REVIEW E》 |2013年第5期|1-12|共12页
  • 作者单位

    Department of Mechanical and Aerospace Engineering Rutgers The State University of New Jersey 98 Brett RoadPiscataway New Jersey 08854 USA;

    Department of Biological Sciences Rutgers The State University of New Jersey Newark New Jersey 07102 USA;

    Department of Biological Sciences Rutgers The State University of New Jersey Newark New Jersey 07102 USA;

    Department of Mechanical and Aerospace Engineering Rutgers The State University of New Jersey 98 Brett RoadPiscataway New Jersey 08854 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号