首页> 美国卫生研究院文献>other >Indentation quantification for in-liquid nanomechanical measurement of soft material using an atomic force microscope: Rate-dependent elastic modulus of live cells
【2h】

Indentation quantification for in-liquid nanomechanical measurement of soft material using an atomic force microscope: Rate-dependent elastic modulus of live cells

机译:使用原子力显微镜对软材料进行液体纳米机械测量的压痕量化:活细胞的速率依赖性弹性模量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, a control-based approach to replace the conventional method to achieve accurate indentation quantification is proposed for nanomechanical measurement of live cells using atomic force microscope. Accurate indentation quantification is central to probe-based nanomechanical property measurement. The conventional method for in-liquid nanomechanical measurement of live cells, however, fails to accurately quantify the indentation as effects of the relative probe acceleration and the hydrodynamic force are not addressed. As a result, significant errors and uncertainties are induced in the nanomechanical properties measured. In this paper, a control-based approach is proposed to account for these adverse effects by tracking the same excitation force profile on both a live cell and a hard reference sample through the use of an advanced control technique, and by quantifying the indentation from the difference of the cantilever base displacement in these two measurements. The proposed control-based approach not only eliminates the relative probe acceleration effect with no need to calibrate the parameters involved, but it also reduces the hydrodynamic force effect significantly when the force load rate becomes high. We further hypothesize that, by using the proposed control-based approach, the rate-dependent elastic modulus of live human epithelial cells under different stress conditions can be reliably quantified to predict the elasticity evolution of cell membranes, and hence can be used to predict cellular behaviors. By implementing the proposed approach, the elastic modulus of HeLa cells before and after the stress process were quantified as the force load rate was changed over three orders of magnitude from 0.1 to 100 Hz, where the amplitude of the applied force and the indentation were at 0.4–2 nN and 250–450 nm, respectively. The measured elastic modulus of HeLa cells showed a clear power-law dependence on the load rate, both before and after the stress process. Moreover, the elastic modulus of HeLa cells was substantially reduced by two to five times due to the stress process. Thus, our measurements demonstrate that the control-based protocol is effective in quantifying and characterizing the evolution of nanomechanical properties during the stress process of live cells.
机译:本文提出了一种基于控制的方法来代替传统方法以实现精确的压痕定量,该方法用于使用原子力显微镜对活细胞进行纳米机械测量。精确的压痕量化对于基于探针的纳米力学性能测量至关重要。然而,由于未解决相对探针加速度和流体动力的影响,用于活细胞的液体中纳米机械测量的常规方法无法准确地量化压痕。结果,在所测量的纳米机械性能中引起了明显的误差和不确定性。在本文中,提出了一种基于控制的方法来解决这些不利影响,方法是通过使用先进的控制技术在活细胞和硬参比样品上跟踪相同的激励力曲线,并通过从这两个测量中悬臂基位移的差异。所提出的基于控制的方法不仅消除了相对探头的加速作用,而无需校准所涉及的参数,而且当力负载率变高时,也显着降低了流体动力作用。我们进一步假设,通过使用所提出的基于控制的方法,可以可靠地量化在不同应力条件下活人上皮细胞的速率依赖性弹性模量,以预测细胞膜的弹性演变,从而可以用于预测细胞行为。通过实施所提出的方法,当力负载率从0.1到100 Hz的三个数量级变化时,应力过程之前和之后的H​​eLa细胞的弹性模量得以量化,其中施加力的幅度和压痕分别为分别为0.4–2 nN和250–450 nm。在应力过程之前和之后,测得的HeLa电池的弹性模量均显示出明显的幂律对负载率的依赖性。此外,由于应力作用,HeLa细胞的弹性模量大大降低了2至5倍。因此,我们的测量结果表明,基于控制的协议可有效量化和表征活细胞应激过程中纳米力学性能的演变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号