...
首页> 外文期刊>PHYSICAL REVIEW E >Transport and collision dynamics in periodic asymmetric obstacle arrays: Rational design of microfluidic rare-cell immunocapture devices
【24h】

Transport and collision dynamics in periodic asymmetric obstacle arrays: Rational design of microfluidic rare-cell immunocapture devices

机译:周期性不对称障碍物阵列中的运输和碰撞动力学:微流控稀有细胞免疫捕获设备的合理设计

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Microfluidic obstacle arrays have been used in numerous applications, and their ability to sort particles orncapture rare cells from complex samples has broad and impactful applications in biology and medicine. Wenhave investigated the transport and collision dynamics of particles in periodic obstacle arrays to guide thendesign of convective, rather than diffusive, transport-based immunocapture microdevices. Ballistic and fullncomputational fluid dynamics simulations are used to understand the collision modes that evolve in cylindricalnobstacle arrays with various geometries. We identify previously unrecognized collision mode structures andndifferential size-based collision frequencies that emerge from these arrays. Previous descriptions of transversendisplacements that assume unidirectional flow in these obstacle arrays cannot capture mode transitions properlynas these descriptions fail to capture the dependence of the mode transitions on column spacing and the attendantnchange in the flow field. Using these analytical and computational simulations, we elucidate design parametersnthat induce high collision rates for all particles larger than a threshold size or selectively increase collisionnfrequencies for a narrow range of particle sizes within a polydisperse population. Furthermore, we investigatenhowthe particle P´eclet number affects collision dynamics and mode transitions and demonstrate that experimentalnobservations from various obstacle array geometries are well described by our computational model.
机译:微流控障碍物阵列已在许多应用中使用,它们从复杂样品中分选或捕获稀有细胞的能力在生物学和医学领域具有广泛而有效的应用。 Wenhave研究了周期性障碍物阵列中颗粒的迁移和碰撞动力学,以指导对流而非扩散的基于迁移的免疫捕获微设备的设计。弹道和全计算流体动力学模拟用于了解在具有各种几何形状的圆柱状障碍物阵列中演化的碰撞模式。我们确定了以前无法识别的碰撞模式结构以及从这些阵列中出现的基于大小的碰撞量。假设这些障碍物阵列中存在单向流动的横向位移的先前描述无法正确捕获模式转换,或者这些描述未能捕获模式转换对列间距和流场伴随变化的依赖性。使用这些分析和计算模拟,我们阐明了设计参数n,该参数对大于阈值大小的所有粒子引起较高的碰撞率,或针对多分散总体中狭窄范围的粒径有选择地增加碰撞频率。此外,我们研究了粒子P´eclet数如何影响碰撞动力学和模式转变,并证明我们的计算模型很好地描述了来自各种障碍物阵列几何形状的实验观察。

著录项

  • 来源
    《PHYSICAL REVIEW E》 |2013年第3期|1-9|共9页
  • 作者单位

    Sibley School of Mechanical Aerospace Engineering Cornell University Ithaca New York USA;

    Sibley School of Mechanical Aerospace Engineering Cornell University Ithaca New York USA;

    Sibley School of Mechanical Aerospace Engineering Cornell University Ithaca New York USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号