...
首页> 外文期刊>Biomedical Microdevices >Parametric control of collision rates and capture rates in geometrically enhanced differential immunocapture (GEDI) microfluidic devices for rare cell capture
【24h】

Parametric control of collision rates and capture rates in geometrically enhanced differential immunocapture (GEDI) microfluidic devices for rare cell capture

机译:用于稀有细胞捕获的几何增强的差分免疫捕获(GEDI)微流体设备中碰撞率和捕获率的参数控制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The enrichment and isolation of rare cells from complex samples, such as circulating tumor cells (CTCs) from whole blood, is an important engineering problem with widespread clinical applications. One approach uses a microfluidic obstacle array with an antibody surface func-tionalization to both guide cells into contact with the capture surface and to facilitate adhesion; geometrically enhanced differential immunocapture is a design strategy in which the array is designed to promote target cell-obstacle contact and minimize other interactions (Gleghorn et al. 2010; Kirby et al. 2012). We present a simulation that uses capture experiments in a simple Hele-Shaw geometry (Santana et al. 2012) to inform a target-cell-specific capture model that can predict capture probability in immunocapture microdevices of any arbitrary complex geometry. We show that capture performance is strongly dependent on the array geometry, and that it is possible to select an obstacle array geometry that maximizes capture efficiency (by creating combinations of frequent target cell-obstacle collisions and shear stress low enough to support capture), while simultaneously enhancing purity by minimizing nonspecific adhesion of both smaller contaminant cells (with infrequent cell-obstacle collisions) and larger contaminant cells (by focusing those collisions into regions of high shear stress).
机译:复杂样品中稀有细胞的富集和分离,例如全血中的循环肿瘤细胞(CTC),是广泛临床应用中的重要工程问题。一种方法是使用具有抗体表面功能化的微流体障碍物阵列来引导细胞与捕获表面接触并促进粘附。几何上增强的差异免疫捕获是一种设计策略,其中将阵列设计为促进靶细胞与障碍物的接触并最小化其他相互作用(Gleghorn等,2010; Kirby等,2012)。我们提出了一个模拟,该模拟使用简单的Hele-Shaw几何体中的捕获实验(Santana等人,2012年)来告知目标细胞特异性捕获模型,该模型可以预测任何任意复杂几何体的免疫捕获微设备中的捕获概率。我们表明捕获性能在很大程度上取决于阵列的几何形状,并且有可能选择最大化捕获效率的障碍物阵列几何形状(通过创建频繁的靶细胞-障碍物碰撞和足够低的剪切应力来支持捕获的组合),而同时通过最小化较小的污染物细胞(不经常发生细胞与障碍物的碰撞)和较大的污染物细胞(通过将这些碰撞集中在高剪切应力区域中)的非特异性粘附来提高纯度。

著录项

  • 来源
    《Biomedical Microdevices》 |2014年第1期|143-151|共9页
  • 作者单位

    Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA;

    Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA;

    Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA;

    Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA;

    Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA,Division of Hematology and Medical Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, NY, 10065, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Immunocapture; Rare cell capture; Circulating tumor cell; CTC; LNCaP; Prostate cancer; GEDI; Microfluidic; Microdevice;

    机译:免疫捕获稀有细胞捕获;循环肿瘤细胞;CTC;LNCaP;前列腺癌;GEDI;微流体;微型设备;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号