首页> 外文期刊>Physica status solidi >Measurements of impact ionization coefficients of electrons and holes in 4H-SiC and their application to device simulation
【24h】

Measurements of impact ionization coefficients of electrons and holes in 4H-SiC and their application to device simulation

机译:4H-SiC中电子和空穴的碰撞电离系数的测量及其在器件仿真中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

This article is intended to review measurements and modeling of anisotropic impact ionization coefficients of electrons and holes in 4H-SiC. Owing to the hexagonal crystal structure, the carrier transport in 4H-SiC shows anisotropy, such as anisotropic mobility and anisotropic impact ionization coefficients. The anisotropy of impact ionization coefficients brings about the difference in the breakdown voltage of p~+n diodes on Si-face and A-face. Experiments showed that the breakdown voltage of a p~+n diode on A-face is 62 percent of that on Si-face. This difference in breakdown voltage corresponds to 81 percent of anisotropy in breakdown fields. The impact ionization coefficients parallel and perpendicular to c-axis were extracted from measurements of the breakdown voltage and the multiplication factor of holes in high electric fields. The analytical model of the anisotropic impact ionization coefficients, which interpolates impact ionization coefficients parallel and perpendicular to c-axis, was derived, considering the energy transport in the avalanche phenomena. The effects of anisotropic impact ionization coefficients on the avalanche breakdown in 4H-SiC power devices are examined. We show that the avalanche breakdown voltage of a power device is affected by the anisotropy of impact ionization coefficients, because avalanche breakdown occurs at the field crowding point at peripheral edge of power device, where the lateral field dominates. Finally, we show that the optimized two-zone junction termination structure suppresses the degradation of the breakdown voltage caused by anisotropy of the impact ionization coefficients.
机译:本文旨在回顾4H-SiC中电子和空穴的各向异性碰撞电离系数的测量和建模。由于具有六方晶体结构,在4H-SiC中的载流子传输表现出各向异性,例如各向异性迁移率和各向异性冲击电离系数。碰撞电离系数的各向异性导致p- + n二极管在Si面和A面的击穿电压有所不同。实验表明,A面上p〜+ n二极管的击穿电压是Si面上的62%。击穿电压的这种差异对应于击穿场中各向异性的81%。从击穿电压和高电场中空穴的倍增系数的测量结果中提取了平行于和垂直于c轴的碰撞电离系数。考虑到雪崩现象中的能量传输,导出了各向异性碰撞电离系数的解析模型,该模型将平行和垂直于c轴的碰撞电离系数进行插值。研究了各向异性冲击电离系数对4H-SiC功率器件雪崩击穿的影响。我们表明,由于雪崩击穿发生在功率器件外围边缘的场拥挤点处,其中横向场占优势,因此雪崩击穿电压受冲击电离系数的各向异性影响。最后,我们表明,优化的两区结终止结构可抑制由碰撞电离系数的各向异性引起的击穿电压的降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号