...
首页> 外文期刊>Physica status solidi >Freestanding CVD boron doped diamond single crystals: A substrate for vertical power electronic devices?
【24h】

Freestanding CVD boron doped diamond single crystals: A substrate for vertical power electronic devices?

机译:独立的CVD硼掺杂金刚石单晶:垂直功率电子设备的基底?

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The development of 'all-diamond' devices for power electronics is attracting more and more interest as judged by the recent increase in the number of publications on the subject Nevertheless most devices reported in (he literature used coplanar or pseudo-vertical geometries which, although promising in term of breakdown voltage, have still a relatively high on-state resistance. This could be related to current crowding due the low cross-section p+ layer. Vertical configuration, which requires thick heavily doped substrates, is a possible alternative usually used in conventional semiconductors. In this study, chemical vapour deposition (CVD) diamond growth conditions allowing heavy boron doping over an important thickness are discussed. It was found that there is an optimal range of microwave power density (MWPD) for which reasonable doping efficiencies and growth rates can be obtained leading to hundreds of micrometers thick crystals with a doping level higher than 10~(20)cm~(-3). The crystal morphology was predicted thanks to a 3D geometrical model and a small addition of oxygen to the gas phase was efficient to avoid the appearance of undesirable crystals faces and keep the crystal integrity. Freestanding boron-doped diamond single crystals were eventually grown and characterized by secondary ion mass spectrometry (SIMS), Fourier transformed InfraRed (FTIR) spectroscopy, Raman spectroscopy, high resolution X-ray diffraction (HRXRD) and four-point probe measurements. The high quality of the synthetic crystals was confirmed exhibiting electrical resistivities as low as 0.26 £1 cm illustrating that (his material is suitable for the development of vertical power electronic devices.
机译:从最近有关该主题的出版物数量的增加可以看出,电力电子“全金刚石”器件的开发吸引了越来越多的兴趣。尽管如此,大多数器件报道(他的文献使用共面或伪垂直几何结构,尽管在击穿电压方面很有希望,但仍具有相对较高的导通电阻,这可能与低截面p +层引起的电流拥挤有关,而垂直配置需要厚的重掺杂衬底,通常可以用于在这项研究中,讨论了允许在重要厚度上进行重硼掺杂的化学气相沉积(CVD)金刚石生长条件,发现在合理的掺杂效率和生长条件下,微波功率密度(MWPD)存在最佳范围可以获得高速率,导致数百微米厚的晶体掺杂水平高于10〜(20)cm〜(-3)。借助3D几何模型可以预测晶体的形态,向气相中少量添加氧气可以有效避免出现不良的晶体表面并保持晶体完整性。最终生长了独立的掺硼金刚石单晶,并通过二次离子质谱(SIMS),傅立叶变换红外(FTIR)光谱,拉曼光谱,高分辨率X射线衍射(HRXRD)和四点探针测量来表征。证实了合成晶体的高质量,其电阻率低至0.26£1 cm,说明(他的材料适合于垂直功率电子设备的开发。

著录项

  • 来源
    《Physica status solidi》 |2012年第9期|p.1651-1658|共8页
  • 作者单位

    Universite Paris 13, Sorbonne Paris Cite, Laboratoire des Sciences des Precedes et des Materiaux, CNRS (UPR 3407), 93430 Villetaneuse, France;

    Universite Paris 13, Sorbonne Paris Cite, Laboratoire des Sciences des Precedes et des Materiaux, CNRS (UPR 3407), 93430 Villetaneuse, France;

    Universite Paris 13, Sorbonne Paris Cite, Laboratoire des Sciences des Precedes et des Materiaux, CNRS (UPR 3407), 93430 Villetaneuse, France;

    Universite Paris 13, Sorbonne Paris Cite, Laboratoire des Sciences des Precedes et des Materiaux, CNRS (UPR 3407), 93430 Villetaneuse, France;

    GEMaC, CNRS-Universite de Versailles St-Quentin, 45 av. des Etats-Unis, 78035 Versailles Cedex, France;

    GEMaC, CNRS-Universite de Versailles St-Quentin, 45 av. des Etats-Unis, 78035 Versailles Cedex, France;

    Universite Paris 13, Sorbonne Paris Cite, Laboratoire des Sciences des Precedes et des Materiaux, CNRS (UPR 3407), 93430 Villetaneuse, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    boron doping; crystal morphology; growth parameters; thick films;

    机译:硼掺杂晶体形态生长参数厚膜;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号