...
首页> 外文期刊>Photovoltaics, IEEE Journal of >Modeling Boron–Oxygen Degradation and Self-Repairing Silicon PV Modules in the Field
【24h】

Modeling Boron–Oxygen Degradation and Self-Repairing Silicon PV Modules in the Field

机译:在田间建模硼 - 氧气降解和自修复硅PV模块

获取原文
获取原文并翻译 | 示例
           

摘要

Photovoltaic (PV) cells manufactured using p-type Czochralski wafers can degrade significantly in the field due to boron-oxygen (BO) defects. Commercial hydrogenation processes can now passivate such defects; however, this passivation can be destabilized under certain conditions. Module operating temperatures are rarely considered in defect studies, and yet are critical to understanding the degradation and passivation destabilization that may occur in the field. Here we show that the module operating temperatures are highly dependent on location and mounting, and the impact this has on BO defects in the field. The System Advisor Model is fed with typical meteorological year data from four locations around the world (Hamburg, Sydney, Tucson, and Wuhan) to predict module operating temperatures. We investigate three PV system mounting types: building integrated (BIPV), rack-mounted rooftop, and rack mounted on flat ground for a centralized system. BO defect reactions are then simulated, using a three-state model based on experimental values published in the literature and the predicted module operating temperatures. The simulation shows that the BIPV module in Tucson reaches 94 degrees C and stays above 50 degrees C for over 1600 h per year. These conditions could destabilize over one-third of passivated BO defects, resulting in a 0.4% absolute efficiency loss for the modules in this work. This absolute efficiency loss could be double for higher efficiency solar cell structures, and modules. On the other hand, passivation of BO defects can occur in the field if hydrogen is present and the module is under the right environmental conditions. It is therefore important to consider the specific installation location and type (or predicted operating temperatures) to determine the best way to treat BO defects. Modules that experience such extreme sustained conditions should be manufactured to ensure incorporation of hydrogen to enable passivation of BO defects in the field, thereby enabling a "self-repairing module."
机译:由于硼 - 氧(BO)缺陷,使用P型Czochralski晶片制造的光伏(PV)电池可以在现场中显着降低。商业氢化过程现在可以钝化这些缺陷;但是,这种钝化可以在某些条件下破坏。模块操作温度很少考虑在缺陷研究中,但对于理解可能发生在该领域可能发生的劣化和钝化稳定性的问题至关重要。在这里,我们表明模块工作温度高度依赖于位置和安装,并且对该领域的BO缺陷产生了影响。系统顾问模型以来自世界各地的四个地点(汉堡,悉尼,图森和武汉)的典型气象年度数据供给,以预测模块工作温度。我们调查了三种光伏系统安装类型:建筑集成(BIPV),机架式屋顶和安装在平面地面的机架,用于集中式系统。然后使用基于文献中发布的实验值和预测模块操作温度的实验值来模拟BO缺陷反应。模拟表明,图森中的BIPV模块达到94摄氏度,每年保持超过50摄氏度超过50摄氏度。这些条件可能会使三分之一的钝化波缺陷稳定,导致这项工作中模块的绝对效率损失0.4%。这种绝对效率损失对于更高效率的太阳能电池结构和模块可能是双倍的。另一方面,如果存在氢气,则可以在场中发生BO缺陷的钝化,并且该模块在正确的环境条件下。因此,重要的是要考虑特定的安装位置和类型(或预测的操作温度),以确定治疗BO缺陷的最佳方法。应制造经历这种极端持续条件的模块,以确保氢气掺入该领域中的Bo缺陷,从而能够实现“自修复模块”。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号