首页> 外文期刊>Performance Evaluation >FAST TCP: Some fluid models, stability and Hopf bifurcation
【24h】

FAST TCP: Some fluid models, stability and Hopf bifurcation

机译:FAST TCP:某些流体模型,稳定性和Hopf分叉

获取原文
获取原文并翻译 | 示例
           

摘要

We study FAST TCP, a new transmission control protocol that uses queueing delay as its feedback measure. We highlight two continuous-time models proposed for FAST that represent two operating regimes: (i) queueing delay forms a large component of the end to -end delay, (ii) propagation delay is the dominant component of the end-to-end delay. These models when coupled with the integrator model for the queue, are shown to yield qualitatively similar results. We then study one of these models in different queueing regimes. In the scenario where the queue can be modelled as an integrator, we conduct a detailed local stability analysis. This yields strict bounds, on the system parameters and round-trip time, to ensure local stability. We show that the system undergoes a Hopf bifurcation, when these bounds are violated, leading to the emergence of limit cycles in the system dynamics. As limit cycles could be detrimental to network performance, we conduct a detailed Hopf bifurcation analysis using Poincare normal forms and center manifold theory. This enables us to characterise the type of the Hopf bifurcation and determine the orbital stability of the limit cycles. We then consider a regime with smaller queues, where end systems react primarily to packet loss. In this regime, larger thresholds could lead to instability. Packet-level simulations corroborate our analytical insights; non-linear oscillations are indeed observed in the queue size. (c) 2017 Elsevier B.V. All rights reserved.
机译:我们研究FAST TCP,这是一种新的传输控制协议,它使用排队延迟作为其反馈措施。我们重点介绍了针对FAST提出的两个连续时间模型,它们代表了两种操作方式:(i)排队延迟是端到端延迟的主要组成部分,(ii)传播延迟是端到端延迟的主要组成部分。这些模型与队列的积分器模型结合使用时,显示出定性相似的结果。然后,我们在不同的排队方式中研究这些模型之一。在可以将队列建模为集成商的情况下,我们进行详细的本地稳定性分析。这样就对系统参数和往返时间产生了严格的界限,以确保局部稳定性。我们表明,当违反这些限制时,系统会经历Hopf分叉,从而导致系统动力学中出现极限环。由于极限循环可能会损害网络性能,因此我们使用Poincare范式和中心流形理论进行了详细的Hopf分支分析。这使我们能够表征Hopf分叉的类型并确定极限环的轨道稳定性。然后,我们考虑一个队列较小的机制,其中终端系统主要对数据包丢失做出反应。在这种情况下,较大的阈值可能会导致不稳定。数据包级仿真证实了我们的分析见解;实际上在队列大小中观察到非线性振荡。 (c)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号