首页> 外文期刊>Organic Electronics >Layer by layer characterisation of the degradation process in PCDTBT: PC_(71)BM based normal architecture polymer solar cells
【24h】

Layer by layer characterisation of the degradation process in PCDTBT: PC_(71)BM based normal architecture polymer solar cells

机译:PCDTBT中降解过程的逐层表征:基于PC_(71)BM的常规体系结构聚合物太阳能电池

获取原文
获取原文并翻译 | 示例
           

摘要

This work demonstrates the stability and degradation of OSCs based on poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3' benzothiadiazole)] (PCDTBT): (6,6)-Phenyl C_(71) butyric acid methyl ester (PC_(71)BM) photoactive blend layers as a function of ageing time in air. Analysis of the stability and degradation process for the OSCs was conducted under ambient air by using current-voltage (I-V) measurements and x-ray photoelectron spectroscopy (XPS). The interface between photoactive layer and HTL (PEDOT:PSS) was also investigated. Device stability was investigated by calculating decay in power conversion efficiency (PCE) as a function of ageing time in the air. The PCE of devices decrease from 5.17 to 3.61% in one week of fabrication, which is attributed to indium and oxygen migration into the PEDOT:PSS and PCDTBT:PC_(71)BM layer. Further, after aging for 1000 h, XPS spectra confirm the significant diffusion of oxygen into the HTL and photoactive layer which increased from 3.0 and 23.3% to 20.4 and 35.7% in photoactive layer and HTL, respectively. Similarly, the indium content reached to 17.9% on PEDOT:PSS surface and 0.4% on PCDTBT:PC_(71)BM surface in 1000 h. Core-level spectra of active layer indicate the oxidation of carbon atoms in the fullerene cage, oxidation of nitrogen present in the polymer matrix and formation of In_2O_3 due to indium diffusion. We also observed a steady fall in the optical absorption of the active layer during ageing in ambient air and it reduced to 76.5% of initial value in 1000 h. On the basis of these experimental results, we discussed key parameters that account for the degradation process and stability of OSCs in order to improve the device performance.
机译:这项工作证明了基于聚[N-9'-十七烷基-2,7-咔唑-alt-5,5-(4',7'-二-2-噻吩基-2',1'的OSCs的稳定性和降解,3'苯并噻二唑)](PCDTBT):(6,6)-苯基C_(71)丁酸甲酯(PC_(71)BM)光敏共混物层在空气中的老化时间。通过使用电流-电压(I-V)测量和X射线光电子能谱(XPS)在环境空气中对OSC的稳定性和降解过程进行了分析。还研究了光敏层和HTL(PEDOT:PSS)之间的界面。通过计算功率转换效率(PCE)随空气老化时间的变化来研究设备的稳定性。器件的PCE在制造一周后从5.17%降低到3.61%,这归因于铟和氧迁移到PEDOT:PSS和PCDTBT:PC_(71)BM层中。此外,在老化1000小时后,XPS光谱证实氧气显着扩散到HTL和光敏层中,从光敏层和HTL中的氧分别从3.0%和23.3%增至20.4%和35.7%。同样,在1000 h内,PEDOT:PSS表面的铟含量达到17.9%,PCDTBT:PC_(71)BM表面的铟含量达到0.4%。活性层的核心能级谱表明富勒烯笼中碳原子的氧化,聚合物基质中存在的氮的氧化以及由于铟扩散而形成的In_2O_3。我们还观察到在环境空气中老化过程中,活性层的光吸收率持续下降,在1000小时内下降到初始值的76.5%。在这些实验结果的基础上,我们讨论了说明OSC降解过程和稳定性的关键参数,以提高设备性能。

著录项

  • 来源
    《Organic Electronics》 |2017年第1期|65-74|共10页
  • 作者单位

    Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia;

    Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia;

    Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia;

    Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo 152-8552, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Organic solar cells; Stability; Degradation; Interlayers diffusion; XPS;

    机译:有机太阳能电池;稳定性;降解;层间扩散;XPS;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号