...
首页> 外文期刊>Organic & biomolecular chemistry >Accelerating the optimization of enzyme-catalyzed synthesis conditions via machine learning and reactivity descriptors
【24h】

Accelerating the optimization of enzyme-catalyzed synthesis conditions via machine learning and reactivity descriptors

机译:通过机器学习和反应性描述符加速酶催化合成条件的优化

获取原文
获取原文并翻译 | 示例

摘要

Enzyme-catalyzed synthesis reactions are of crucial importance for a wide range of applications. An accurate and rapid selection of optimal synthesis conditions is crucial and challenging for both human knowledge and computer predictions. In this work, a new scenario, which combines a data-driven machine learning (ML) model with reactivity descriptors, is developed to predict the optimal enzyme-catalyzed synthesis conditions and the reaction yield. Fourteen reactivity descriptors in total are constructed to describe 125 reactions (classified into five categories) included in different reaction mechanisms. Nineteen ML models are developed to train the dataset and the Quadratic support vector machine (SVM) model is found to exhibit the best performance. The Quadratic SVM model is then used to predict the optimal reaction conditions, which are subsequently used to obtain the highest yield among 109 200 reaction conditions with different molar ratios of substrates, solvents, water contents, enzyme concentrations and temperatures for each reaction. The proposed protocol should be generally applicable to a diverse range of chemical reactions and provides a black-box evaluation for optimizing the reaction conditions of organic synthesis reactions.
机译:酶催化的合成反应对于广泛的应用是至关重要的。对人类知识和计算机预测的准确和快速选择是对人类知识和计算机预测的至关重要和挑战。在这项工作中,开发了一种与反应性描述符相结合的数据驱动机器学习(ML)模型的新情景以预测最佳酶催化的合成条件和反应产率。共有十四个反应性描述符,构建为描述不同反应机制中包括的125个反应(分为五类)。由1919mL模型开发出培训数据集,并且发现二次支持向量机(SVM)模型表现出最佳性能。然后使用二次SVM模型来预测最佳反应条件,其随后用于在109200个反应条件下获得具有不同摩尔比的底物,溶剂,水含量,酶浓度和每种反应温度的最高产率。所提出的议定书通常适用于各种化学反应,并提供了用于优化有机合成反应的反应条件的黑匣子评价。

著录项

  • 来源
    《Organic & biomolecular chemistry》 |2021年第28期|6267-6273|共7页
  • 作者单位

    Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization Low Carbon Energy Institute and School of Chemical Engineering China University of Mining and Technology Xuzhou 221008 People's Republic of China School of Science City University of Hong Kong Hong Kong SAR 999077 People's Republic of China;

    Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization Low Carbon Energy Institute and School of Chemical Engineering China University of Mining and Technology Xuzhou 221008 People's Republic of China;

    School of Science Xi'an Polytechnic University Xi'an 710048 People's Republic of China Department of Physics Sungkyunkwan University Suwon 16419 Korea;

    School of Environment and Safety Engineering North University of China Taiyuan 030051 People's Republic of China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号