首页> 外文期刊>Organic & biomolecular chemistry >How inverting β-1,4-galactosyltransferase-1 can quench a high charge of the by-product UDP~(3-) in catalysis: a QM/MM study of enzymatic reaction with native and UDP-5' thio galactose substrates
【24h】

How inverting β-1,4-galactosyltransferase-1 can quench a high charge of the by-product UDP~(3-) in catalysis: a QM/MM study of enzymatic reaction with native and UDP-5' thio galactose substrates

机译:β-1,4-半乳糖基转移酶-1的逆转β-1,4-半乳糖基转移酶-1可以在催化作用中淬火副产物UDP〜(3-):QM / mm对天然和UDP-5'Thio半乳糖基材的酶促反应研究

获取原文
获取原文并翻译 | 示例
       

摘要

The catalysis of inverting glycosyltransferases consists of several biophysical and biochemical processes during which the transfer of a sugar residue from the purine phosphate donor substrate to an acceptor substrate occurs with stereo-inversion of the anomeric C1 center at a product. During catalysis a highly charged phosphate by-product (UDP~(3-)) is formed and a mechanism of how the enzyme stabilizes it back to the UDP~(2-) form is not known. Using methods of molecular modeling (hybrid DFT-QM/MM calculations) we proposed and validated a catalytic mechanism of bovine inverting p-l,4-galactosyltransferase-1 (p4Gal-T1) with native (UDP-galactose) and thio donor substrates (UDP-5' thio galactose). We focused on three aspects of the mechanism not yet investigated: (ⅰ) the formation of an oxocarbenium ion intermediate, which was only found for the retaining glycosyltransferases for the time being; (ⅱ) the mechanism of stabilization of a highly charged phosphate by-product (UDP~(3-)) back to its standard in vivo form (UDP~(2-)); (ⅲ) explanation for why in experimental measurements the rate of catalysis with the thio donor substrate is only 8% of the rate of that with the natural substrate. To understand the differences in the interaction patterns between the complexes enzyme: UDP-Gal and enzyme: UDP-5S-Gal, fragmented molecular orbital (FMO) decomposition energy analysis was carried out at the DFT level.
机译:反相糖基转移酶的催化剂由几种生物物理和生化方法组成,在此期间将糖残余物从嘌呤磷酸盐供体基质转移到受体底物中,并且在产物中的天体C1中心的立体转化。在催化期间,形成高电荷的磷酸盐副产物(UDP〜(3-)),并且酶如何将其稳定回UDP〜(2-)形式的机制是未知的。使用分子建模(杂交DFT-QM / MM计算)的方法,我们提出并验证了牛反相PL,4-半乳糖基转移酶-1(P4GAL-T1)的催化机制,具有天然(UDP-半乳糖)和硫脲供体基材(UDP- 5'Thio半乳糖)。我们专注于尚未研究的机制的三个方面:(Ⅰ)氧化羰烯中间体的形成,仅针对保留糖基转移酶进行时间; (Ⅱ)将高电荷的磷酸盐副产物(UDP〜(3-))稳定的机制返回其体内形式标准(UDP〜(2-)); (Ⅲ)在实验测量中的原因解释,硫族供体基质的催化速率仅为天然基质的速率的8%。为了了解复合物酶之间的相互作用模式的差异:UDP-GAL和酶:UDP-5S-GAL,碎片分子轨道(FMO)分解能量分析在DFT水平进行。

著录项

  • 来源
    《Organic & biomolecular chemistry》 |2020年第38期|7585-7596|共12页
  • 作者

    J. Kona;

  • 作者单位

    Institute of Chemistry Center for Glycomics Slovak Academy of Sciences Dubravska cesta9 84538 Bratislava Slovak Republic;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:15:49

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号