首页> 外文期刊>Optics and Lasers in Engineering >A 3D dynamic numerical approach for temperature and thermal stress distributions in multilayer laser solid freeform fabrication process
【24h】

A 3D dynamic numerical approach for temperature and thermal stress distributions in multilayer laser solid freeform fabrication process

机译:多层激光固体自由成形制造过程中温度和热应力分布的3D动态数值方法

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a 3D transient numerical approach for modeling the multilayer laser solid freeform fabrication (LSFF) process. Using this modeling approach, the geometry of the deposited material as well as temperature and thermal stress fields across the process domain can be predicted in a dynamic fashion. In the proposed method, coupled thermal and stress domains are numerically obtained assuming a decoupled interaction between the laser beam and powder stream. To predict the time-dependent geometry of the deposited material, once the melt pool boundary is obtained, the process domain is discretized in a cross-sectional fashion based on the powder feed rate, elapsed time, and intersection of the melt pool and powder stream area on the workpiece. Layers of additive material are then added onto the non-planar domain. Main process parameters affected by a multilayer deposition due to the formation of non-planar surfaces, such as powder catchment, are incorporated into the modeling approach to enhance the accuracy of the results. To demonstrate the proposed algorithm, fabrication of a four-layer thin wall of AISI 304 L stainless steel on a workpiece with the same material is modeled. The geometry of the wall, temperature, and stress fields across the modeling domain are dynamically predicted throughout the process. The model is used to investigate the effect of preheating and clamping the workpiece to the positioning table. Results show that preheating improves the process by reducing the thermal stresses as well as the settling time for the formation of a steady-state melt pool in the first layer. In addition, clamping the workpiece can also decrease thermal stresses at its critical locations (i.e. deposition region). In terms of geometrical aspects, the results show that the temperature and the thickness of the deposited layers increase at the end-points of layers 2-4. The reliability and the accuracy of the model are experimentally verified.
机译:本文提出了一种3D瞬态数值方法,用于对多层激光固体自由成形制造(LSFF)工艺进行建模。使用这种建模方法,可以动态方式预测沉积材料的几何形状以及整个过程域的温度和热应力场。在所提出的方法中,假设激光束和粉末流之间的相互作用是不耦合的,则可以数值获得耦合的热域和应力域。为了预测沉积材料随时间的几何形状,一旦获得熔池边界,就根据粉末进料速率,经过时间以及熔池与粉末流的交点以横截面方式离散过程域。工件上的区域。然后将添加材料层添加到非平面区域中。由于非平面表面的形成而受到多层沉积影响的主要工艺参数(例如粉尘收集)被纳入建模方法中,以提高结果的准确性。为了演示所提出的算法,对在具有相同材料的工件上制造四层AISI 304 L不锈钢薄壁进行了建模。在整个过程中动态预测整个建模域的壁的几​​何形状,温度和应力场。该模型用于研究预热并将工件夹紧到定位台的效果。结果表明,预热通过降低热应力以及在第一层中形成稳态熔池的沉降时间来改善工艺。另外,夹紧工件还可以减小其关键位置(即沉积区域)的热应力。就几何方面而言,结果表明,沉积的层的温度和厚度在层2-4的端点处增加。通过实验验证了模型的可靠性和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号