...
首页> 外文期刊>Optics and Lasers in Engineering >Non-planar interconnects in double-sided flexible Cu-PET substrates using a laser-assisted maskless microdeposition process: 3D finite element modeling and experimental analysis
【24h】

Non-planar interconnects in double-sided flexible Cu-PET substrates using a laser-assisted maskless microdeposition process: 3D finite element modeling and experimental analysis

机译:使用激光辅助的无掩模微沉积工艺在双面柔性Cu-PET基板中进行非平面互连:3D有限元建模和实验分析

获取原文
获取原文并翻译 | 示例
           

摘要

Non-planar (3D) interconnects have an important role in the electronic packaging industry these days. These unconventional interconnects allow manufacturers to save materials and space while connecting circuit components on flexible and non-planar substrates. Among a variety of flexible boards, double-sided flexible substrates have attracted the electronic industry to effectively and compactly develop miniaturized flexible devices such as sensors-on-chips. This study reports our developmental procedure for the creation of non-planar silver interconnects on the edge of double-sided copper substrates separated by a layer of polyethylene terephthalate (PET) using laser-assisted maskless microdeposition (LAMM). The article consists of the characterization of the LAMM process to effectively deposit Ag nanoparticles for production of conductive interconnects. Several parameters, including the deposition and laser processing parameters, are optimized to achieve interconnects free of pores, cracks and delamination. For investigating the topography and microstructure of interconnects, various analytical tools, such as SEM, XRD, Profilometery, and EDS were used. Furthermore, a 3D finite element numerical model was developed to predict the laser processing of silver nanoparticles on the substrate. The model includes a coupled thermal and structural governing physics to derive the temperature history throughout the simulation as well as strain/displacement within the substrate, which is identified the major source of cark formation in Ag tracks. The SEM micrographs of the laser processed nanoparticles suggest that a minimum of 1.24 W laser power was needed for an effective nanoparticles sintering to obtain conductive 3D interconnects with minimum amount of cracks whereas a 1.7 W laser power caused PET to decompose.
机译:如今,非平面(3D)互连在电子封装行业中发挥着重要作用。这些非常规的互连允许制造商节省材料和空间,同时在柔性和非平面基板上连接电路组件。在各种挠性板中,双面挠性基板吸引了电子工业以有效且紧凑地开发诸如芯片上传感器的小型化挠性器件。这项研究报告了我们使用激光辅助无掩模微沉积(LAMM)在由铜对苯二甲酸乙二醇酯(PET)分隔的双面铜基板边缘上创建非平面银互连的开发过程。本文包括LAMM工艺的特征,以有效沉积Ag纳米颗粒以生产导电互连。优化了几个参数,包括沉积和激光加工参数,以实现无孔,无裂纹和无分层的互连。为了研究互连的形貌和微观结构,使用了各种分析工具,例如SEM,XRD,Profilometery和EDS。此外,开发了3D有限元数值模型来预测基底上银纳米粒子的激光加工。该模型包括耦合的热学和结构学控制物理原理,可得出整个模拟过程中的温度历史以及基体内部的应变/位移,这被确定为Ag道中形成焦炭的主要来源。激光处理的纳米粒子的SEM显微照片表明,有效的纳米粒子烧结至少需要1.24 W的激光功率,才能获得具有最少裂纹的导电3D互连,而1.7 W的激光功率会使PET分解。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号